Abstract:
A direct decomposition device for hydrocarbons for directly decomposing hydrocarbons into carbon and hydrogen includes a rector containing a catalyst including a plurality of metal particles with an iron purity of 86% or more. The reactor is configured to be supplied with a raw material gas containing hydrocarbons.
Abstract:
A composite comprises a carbonaceous and a metallic nanotube conjugated with a carbonaceous support. The composite may be used to remove contaminants from water.
Abstract:
A method for recovering a catalyst, wherein a solution containing a reaction mixture obtained by performing a hydrogenation reaction in a presence of a catalyst containing a platinum group metal is brought into contact with a fiber membrane having a group containing an amino group or a thiol group on a surface, thereby recovering the platinum group metal included in the solution is provided.
Abstract:
A novel method for catalytic dehydration of glycerol to acrolein is provided. A fixed bed reactor is used, which is placed in a microwave unit. The feedstock is introduced into the fixed bed reactor after being preheated and gasified. Continuous glycerol dehydration occurs in the presence of a microwave-absorbing catalyst in the fixed bed reactor to form acrolein. The microwave-absorbing catalyst is composed of an active component loaded on a core-shell structure which consists of microwave absorbent coated by an oxide. The uniformity of microwave heating can reduce the formation of hot spot during the reaction and hence improve the catalyst stability. The process and operation is simple, and the unit can steadily run for a long time.
Abstract:
Articles comprising a catalyst film comprising VOx, MoO3 or WO3, and TiO2 deposited on a substrate are disclosed. The articles are useful for selective catalytic reduction (SCR) of NOx in exhaust gases. Methods for producing such articles deposit a catalyst film on the substrate to form a coated substrate, which is then calcined. When used in an SCR process, the coated articles have enhanced activity for NOx conversion, reduced activity for SOx conversion, or both. Light-weight, coated articles having high catalyst loads can be fabricated at the same or reduced dimensions when compared with laminated articles, and increased kNOx/kSOx ratios are available even from coated articles having relatively thin catalyst films. The articles should have particular value for power plant operations, where coal and high-sulfur fuels are commonly used and controlling sulfur trioxide generation is critical.
Abstract:
A process and device for the regeneration of catalyst is presented. The device includes a series of grids within a regeneration vessel, where each grid includes small openings for the passage of gas, and larger openings for the passage of catalyst. The grids span horizontally across the vessel, and are spaced vertically apart to create a flow of catalyst down through the regenerator.
Abstract:
Disclosed is a process for the manufacture of haloalkane compounds, and more particularly, an improved process for the manufacture of the compound 1,1,1,3,3-penta-chloropropane (HCC-240fa), which mitigates the formation of by-products from vinyl chloride (CH2═CHCl). The present invention is also useful in the manufacture of other haloalkane compounds such as HCC-250 and HCC-360. One embodiment of the invention comprises a method for mitigating 1,1,3,3,5,5-hexachloropentane and 1,1,1,3,5,5-hexachloropentane formation in the HCC-240fa manufacturing process, in which FeCl3, is introduced to a reactor only after the start-up phase has ended and a continuous operation has started. In a preferred embodiment, “pre-chelated” FeCl3, which is concentrated in a catalyst recovery column, is introduced to reactor after the continuous operation has started.
Abstract:
The present invention relates to a method of conditioning suspended catalysts, wherein at least part of the catalyst-comprising reaction medium is taken from one or more reactors and the suspended, at least partially inactivated catalysts are separated off and purified by means of at least one membrane filtration, with at least one of the membrane filtrations being carried out as a diafiltration.
Abstract:
A fixed bed hydroprocessing system, and also a method for upgrading a pre-existing fixed bed hydroprocessing system, involves preliminarily upgrading a heavy oil feedstock in one or more slurry phase reactors using a colloidal or molecular catalyst and then further hydroprocessing the upgraded feedstock within one or more fixed bed reactors using a porous supported catalyst. The colloidal or molecular catalyst is formed by intimately mixing a catalyst precursor composition into a heavy oil feedstock and raising the temperature of the feedstock to above the decomposition temperature of the precursor composition to form the colloidal or molecular catalyst in situ. Asphaltene or other hydrocarbon molecules otherwise too large to diffuse into the pores of the fixed bed catalyst can be upgraded by the colloidal or molecular catalyst. One or more slurry phase reactors may be built and positioned upstream from one or more fixed bed reactors of a pre-existing fixed bed system and/or converted from one or more pre-existing fixed bed reactors.
Abstract:
The present invention is a method for recovering a catalyst from a catalyst body comprising a carrier having a catalyst layer formed on at least a part of the surface thereof, which comprises (a) a step of forming an overcoat layer on the surface of the catalyst layer, and (b) a step of allowing the catalyst body having the overcoat layer formed thereon to stand under the condition to result in a difference in expansibility or contractility exhibited by the overcoat layer from that exhibited by the carrier, wherein exfoliation of the catalyst layer from the carrier is permitted by means of the resulting difference in expansibility or contractility under the condition.