摘要:
Disclosed are a liquid hydrogenated nitrile-butadiene rubber, a preparation method therefor and the use thereof. In the liquid hydrogenated nitrile-butadiene rubber: the content of acrylonitrile is 15-50%; the hydrogenation saturation is 75-99.5%; the weight-average molecular weight (Mw) is 3,000-60,000; the molecular weight polydispersity index (PDI) is 2.0-8.0; and the glass transition temperature (Tg) is lower than −28° C. The liquid hydrogenated nitrile-butadiene rubber is low in molecular weight and wide in molecular weight polydispersity, simultaneously has an excellent fluidity during processing and excellent mechanical properties after curing and has a unique application value in the field of special rubbers; and the preparation method therefor is simple and feasible in terms of the process.
摘要:
The present invention provides methods of depolymerizing and hydrogenating polymers using a transition metal catalyst represented by formula Ia or Ib: where the structural variables are defined herein.
摘要:
The invention relates to novel carbene ligands and their incorporated monomeric and resin/polymer linked ruthenium catalysts, which are recyclable and highly active for olefin metathesis reactions. It is disclosed that significant electronic effect of different substituted 2-alkoxybenzylidene ligands on the catalytic activity and stability of corresponding carbene ruthenium complexes, some of novel ruthenium complexes in the invention can be broadly used as catalysts highly efficient for olefin metathesis reactions, particularly in ring-closing (RCM), ring-opening (ROM), ring-opening metathesis polymerization (ROMP) and cross metathesis (CM) in high yield. The invention also relates to preparation of new ruthenium complexes and the use in metathesis.
摘要:
The present invention provides methods of depolymerizing and hydrogenating polymers using a transition metal catalyst represented by formula Ia or Ib: where the structural variables are defined herein.
摘要:
The invention relates to novel carbene ligands and their incorporated monomeric and resin/polymer linked ruthenium catalysts, which are recyclable and highly active for olefin metathesis reactions. It is disclosed that significant electronic effect of different substituted 2-alkoxybenzylidene ligands on the catalytic activity and stability of corresponding carbene ruthenium complexes, some of novel ruthenium complexes in the invention can be broadly used as catalysts highly efficient for olefin metathesis reactions, particularly in ring-closing (RCM), ring-opening (ROM), ring-opening metathesis polymerization (ROMP) and cross metathesis (CM) in high yield. The invention also relates to preparation of new ruthenium complexes and the use in metathesis.
摘要:
The present invention relates to a kind of novel carbene ligands and ruthenium catalysts, which is highly active and selective for ROMP and RCM reactions, respectively. It discloses the significant electronic and steric effect of different substituted carbene ligands on the catalytic activity and stability of corresponding carbene ruthenium complexes; some of novel ruthenium complexes in the invention can be broadly used as catalysts highly effectively and selective for ROMP and RCM reactions. The invention also relates to preparation of new ruthenium catalysts and the uses in metathesis. Moreover, the invention also provides effective methods of making various functional polymers by ROMP reaction in the presence of new ruthenium catalysts.
摘要:
The invention relates to novel carbene ligands and their incorporated monomeric and resin/polymer linked ruthenium catalysts, which are recyclable and highly active for olefin metathesis reactions. It is disclosed that significant electronic effect of different substituted 2-alkoxybenzylidene ligands on the catalytic activity and stability of corresponding carbene ruthenium complexes, some of novel ruthenium complexes in the invention can be broadly used as catalysts highly efficient for olefin metathesis reactions, particularly in ring-closing (RCM), ring-opening (ROM), ring-opening metathesis polymerization (ROMP) and cross metathesis (CM) in high yield. The invention also relates to preparation of new ruthenium complexes and the use in metathesis.