摘要:
Provided are a cathode active material that has improved crystal-structure stability during continuous or high-voltage charging of a nonaqueous electrolyte rechargeable material, excellent cycle characteristics (capacity retention), and high capacity, as well as a cathode and a nonaqueous electrolyte rechargeable battery containing the cathode active material. The cathode active material has a composition represented by formula (1): Lix−yNayCowAlaMgbMcO2+α wherein x, y, w, a, b, c, and α each denotes particular values; and M stands for at least one element selected from Ca, Y, rare earth elements, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Ni, Cu, Ag, Zn, B, Ga, C, Si, Sn, N, P, S, F, and Cl; wherein the cathode active material is in the form of lithium-containing composite oxide particles having a compound adhered on a surface thereof, the compound containing at least one element selected from Al, Mg, and M.
摘要:
The present invention provides a regenerator material having a high specific heat in a temperature range of 10K or higher (in particular, a temperature range of 10 to 20K), as well as a regenerator and a refrigerator provided with the regenerator material. Specifically, the present invention provides a regenerator material represented by general formula (1): Er1−xRxNi1+α (1), wherein x is 0
摘要:
There is provided a method for producing a magnetic refrigeration module. The method comprises: a step (1) of preparing a mixture powder A containing an La(Fe,Si)13-based alloy powder, an M powder, and optionally an organic binder, the La(Fe,Si)13-based alloy powder having a main phase with an NaZn13-type crystal structure, and the M powder containing a metal and/or an alloy and having a melting point of 1090° C. or lower; a step (2) of subjecting the mixture powder A to a heat treatment in a reducing atmosphere at a temperature close to the melting point of the M powder to obtain a sintered body B; and a step (3) of subjecting the sintered body B to a hydrogenation treatment in a hydrogen-containing atmosphere.
摘要:
Provided are hydrogen storage alloy powder capable of providing a nickel-hydrogen rechargeable battery with simultaneous excellence in initial activity, discharge capacity, and cycle characteristics, which are otherwise in a trade-off relationship, an anode for a nickel-hydrogen rechargeable battery as well as a nickel-hydrogen rechargeable battery employing the same. The hydrogen storage alloy has a particular composition represented by formula (1), R1-aMgaNibAlcMd, and has at its outermost surface a Mg-rich/Ni-poor region having a composition with a Mg molar ratio higher than that in formula (1) and a Ni molar ratio lower than that in formula (1), and has inside a Mg/Ni-containing region having a composition with a Mg molar ratio lower than and a Ni molar ratio higher than those in the Mg-rich/Ni-poor region.
摘要:
A safe and industrially advantageous production method is disclosed for producing a rare earth-Mg—Ni based hydrogen storage alloy which realizes production of a nickel-hydrogen rechargeable battery having excellent cycle characteristics and a large capacity. The method is for producing a rare earth-Mg—Ni based hydrogen storage alloy including element A, Mg, and element B, wherein element A is composed of at least one element R selected from rare earth elements including Sc and Y, and optionally at least one element selected from Zr, Hf, and Ca, and element B is composed of Ni and optionally at least one element selected from elements other than element A and Mg. The method includes first step of mixing an alloy consisting of elements A and B and Mg metal and/or a Mg-containing alloy having a melting point not higher than the melting point of Mg metal, and second step of heat-treating a mixture obtained from first step for 0.5 to 240 hours at a temperature 5 to 250° C. lower than a melting point of the rare earth-Mg—Ni based hydrogen storage alloy to be obtained.
摘要:
Provided is a cathode active material for nonaqueous electrolyte rechargeable batteries which allows production of batteries having improved load characteristics with stable quality, and also allows production of batteries having high capacity. Also provided are a cathode for nonaqueous electrolyte rechargeable batteries and a nonaqueous electrolyte rechargeable battery. The cathode active material includes secondary particles each composed of a plurality of primary particles, and/or single crystal grains, and has a specific surface area of not smaller than 20 m2/g and smaller than 0.50 m2/g, wherein average number A represented by formula (1) is not less than 1 and not more than 10: A=(m+p)/(m+s) (m: the number of single crystal grains; p: the number of primary particles composing the secondary particles; s: the number of secondary particles).
摘要:
Provided is a magnetic refrigeration material which has a Curie temperature near room temperature or higher, and provides refrigeration performance well over that of conventional materials when subjected to a field change up to 2 Tesla, which is assumed to be achievable with a permanent magnet. The magnetic refrigeration material is of a composition represented by the formula La1-fREf(Fe1-a-b-c-d-eSiaCObXcYdZe)13 (RE: at least one of rare earth elements including Sc and Y and excluding La; X: Ga and/or Al; Y: at least one of Ge, Sn, B, and C; Z: at least one of Ti, V, Cr, Mn, Ni, Cu, Zn, and Zr; 0.03≦a≦0.17, 0.003≦b≦0.06, 0.02≦c≦0.10, 0≦d≦0.04, 0≦e≦0.04, 0≦f≦0.50), and has Tc of not lower than 220 K and not higher than 276 K, and the maximum (−ΔSmax) of magnetic entropy change (−ΔSM) of the material when subjected to a field change up to 2 Tesla is not less than 5 J/kgK.
摘要翻译:本发明提供一种磁性制冷材料,其具有接近室温或更高的居里温度,并且当经过场效应达到2特斯拉时,其制冷性能优于常规材料,这被认为可以用永磁体实现。 磁致冷材料为式La1-fREf(Fe1-abcd-eSiaCObXcYdZe)13(RE:包括Sc和Y,除La之外的至少一种稀土元素,X:Ga和/或Al; Y :Ge,Sn,B和C中的至少一种; Z:Ti,V,Cr,Mn,Ni,Cu,Zn和Zr中的至少一种;0.03≤a≤0.17,0.003b@ 0.06,0.02 并且具有不低于220K且不高于276K的Tc,并且磁熵的最大值(-DeltaSmax) 当进行场特性变化达2特斯拉时材料的变化(-DeltaSM)不小于5J / kgK。
摘要:
Provided are alloy flakes for rare earth sintered magnet, which achieve a high rare earth component yield after pulverization with respect to before pulverization and a uniform particle size after pulverization, and a method for producing such alloy at high energy efficiency in an industrial scale. The method includes (A) preparing an alloy melt containing R composed of at least one element selected from rare earth metal elements including Y, B, and the balance M composed of Fe, or of Fe and at least one element selected from transition metal elements other than Fe, Si, and C, (B) rapidly cooling/solidifying the alloy melt to not lower than 700° C. and not higher than 1000° C. by strip casting with a cooling roll, and (C) heating and maintaining, in a particular temperature range, alloy flakes separated from the roll by rapid cooling and solidifying in step (B) before the flakes are cooled to not higher than 500° C., to obtain alloy flakes having a composition of 27.0 to 33.0 mass % R, 0.90 to 1.30 mass % boron, and the balance M.
摘要:
The present invention relates to hydrogen storage alloys, methods for producing the same, and anodes produced with such alloys for nickel-hydrogen rechargeable batteries. The alloys are useful as electrode materials for nickel-hydrogen rechargeable batteries, excellent, when used as anode materials, in corrosion resistance or activity such as initial activity and high rate discharge performance, of low cost compared to the conventional alloys with a higher Co content, and recyclable. The alloys are of a composition represented by the formula (1), and has a substantially single phase structure, and the crystals thereof have an average long axis diameter of 30 to 160 μm, or not smaller than 5 μm and smaller than 30 μm. The present anodes for rechargeable batteries contain at least one of these hydrogen storage alloys: RNixCoyMz (1) (R: rare earth elements etc., M: Mg, Al, etc., 3.7≦x≦5.3, 0.1≦y≦5.0, 0.1≦z≦1.0, 5.1≦x+y+z≦5.5).
摘要翻译:本发明涉及储氢合金,其制造方法和用镍氢可再充电电池用这种合金制成的阳极。 该合金可用作镍氢可再充电电池的电极材料,当用作阳极材料时,与具有较高Co含量的常规合金相比,耐腐蚀性或诸如初始活性和高放电性能的活性优异,成本低廉 ,并可回收。 该合金是由式(1)表示的组成,其基本上具有单相结构,其晶体的平均长轴直径为30〜160μm,不小于5μm,小于30μm。 目前的可再充电电池阳极含有这些储氢合金中的至少一种:RNixCoyMz(1)(R:稀土元素等,M:Mg,Al等,3.7和nlE; x≦̸ 5.3,0.1和nlE; y& 5.0,0.1≦̸ z≦̸ 1.0,5.1和nlE; x + y + z≦̸ 5.5)。