Abstract:
In some embodiments, the method can comprise locating a targeted portion of skin surface; delivering ultrasound energy to subcutaneous tissue below the skin surface; producing a biological effect in at least one of the skin surface and the subcutaneous tissue; and improving the appearance of the targeted portion of the skin surface. Improving the appearance of the skin surface can be at least one of increasing skin elasticity, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, treating and/or preventing acne, reducing a blemish, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, rejuvenating skin, increasing collagen in the subcutaneous tissue, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, generating new tissue in the subcutaneous layer, and combinations thereof.
Abstract:
A method can include targeting a region of interest below a surface of skin, which contains fat lobuli and delivering ultrasound energy to the region of interest. The ultrasound energy generates a conformal lesion with said ultrasound energy on a surface of a fat lobuli. The lesion creates an opening in the surface of the fat which allows the draining of a fluid out of the fat lobuli and through the opening. In addition, by applying ultrasound energy to fat cells to increase the temperature to between 43° C. and 49° C. degrees, cell apoptosis can be realized, thereby resulting in reduction of fat.
Abstract:
A method and system for energy-based (e.g., ultrasound treatment and/or other modalities) of skin glands are provided. An exemplary method and system for targeted treatment of skin glands, such as sweat and/or sebaceous glands, can be configured in various manners, such as through use of therapy only, therapy and monitoring, imaging and therapy, or therapy, imaging, and monitoring, and/or through use of focused, unfocused, or defocused ultrasound (or other energy) through control of various spatial and temporal parameters. As a result, ablative energy can be deposited at the particular depth at which the skin gland population is located below the skin surface.
Abstract:
Methods and systems for treating skin, such as stretch marks through deep tissue tightening with ultrasound are provided. An exemplary method and system comprise a therapeutic ultrasound system configured for providing ultrasound treatment to a shallow tissue region, such as a region comprising an epidermis, a dermis or a deep dermis. In accordance with various exemplary embodiments, a therapeutic ultrasound system can be configured to achieve depth with a conformal selective deposition of ultrasound energy without damaging an intervening tissue. In addition, a therapeutic ultrasound can also be configured in combination with ultrasound imaging or imaging/monitoring capabilities, either separately configured with imaging, therapy and monitoring systems or any level of integration thereof.
Abstract:
This disclosure provides systems and methods for sensing coupling of an ultrasound source to a target and for providing a constant average output of power from an ultrasound source. The systems and methods can include a frequency sweep function. The systems and methods can also include receiving reflected energy from an acoustic window and determining a feedback using the reflected energy. The systems and methods can also include comparing the feedback with a threshold level and using the comparison to determine if the ultrasound source is coupled with a target.
Abstract:
A method and system for ultrasound treatment are provided. Acoustic energy, including ultrasound, can serve as input energy to a mask with apertures, such apertures acting as secondary acoustic sources to create a modulated output acoustic energy in a treatment region and treatment effects. Under proper control output energy can be precisely placed and controlled in tissue. In some embodiments, methods and systems are configured for ultrasound treatment based on creating an output energy distribution in tissue. In some embodiments, methods and systems are configured based on creating an output temperature distribution in tissue.
Abstract:
A non-invasive variable depth ultrasound treatment method and system comprises a variable depth transducer system configured for providing ultrasound treatment to a patient. An exemplary variable depth transducer system can comprise a transducer configured to provide treatment to more than one region of interest, such as between a deep treatment region of interest and a superficial region of interest, and/or a subcutaneous region of interest. The variable depth transducer can comprise a transduction element having a piezoelectrically active layer, matching layers and/or other materials for generating radiation or acoustical energy. The variable depth transducer may be configured to operate at moderate frequencies within the range from approximately 750 kHz to 20 MHz or more. In addition, the transduction element may be configured with a variable depth device comprising one or more materials configured to allow for control and focusing/defocusing of the acoustic energy to more than one region of interest.
Abstract:
Some embodiments provide a method of providing ultrasound energy having a stable power output. The method can comprise providing ultrasound energy from a ultrasound transducer; determining a power level threshold of the ultrasound energy; monitoring a power level of the ultrasound energy over time of the ultrasound energy; communicating a power level to a controller; adjusting the frequency of the ultrasound energy upon a change in the power level; and maintaining the power level threshold of the ultrasound energy.
Abstract:
Methods for non-invasive fat reduction can include targeting a region of interest below a surface of skin, which contains fat and delivering ultrasound energy to the region of interest. The ultrasound energy generates a thermal lesion with said ultrasound energy on a fat cell. The lesion can create an opening in the surface of the fat cell, which allows the draining of a fluid out of the fat cell and through the opening. In addition, by applying ultrasound energy to fat cells to increase the temperature to between 43 degrees and 49 degrees, cell apoptosis can be realized, thereby resulting in reduction of fat.
Abstract:
A method and system for non-ablative acne treatment and prevention is disclosed. The method utilizes ultrasound energy which is targeted at a region of interest to treat existing acne and prevent future acne from forming. The application of ultrasound energy causes numerous physiological effects that treat acne. Some of these physiological effects comprise reducing sebum, increasing perfusion at the region of interest, denaturing proteins at the region of interest, creating an uninhabitable environment at the region of interest, initiating programmed cell death at the region of interest and the initiation of mechanical effects at the region of interest.