Abstract:
An optical device including a positioning module, a multi-band light-source module, a tracking and locking module, a monitoring module and a control module is disclosed. The positioning module positions eyes according to their characteristics. The multi-band light source module is coupled to the positioning module. After the positioning module positions eyes, the multi-band light-source module emits multi-band light to eyes. The tracking and locking module tracks and locks eyes and provides first information including whether eyes are locked. The monitoring module monitors eyes and provides second information including whether eyes are emitted by the multi-band light for a default time. The control module is coupled to the tracking and locking module, the monitoring module and the multi-band light-source module to generate a control signal according to the first information and the second information to control the multi-band light-source module to continuously or stop emitting the multi-band light to eyes.
Abstract:
A spectrometer is disclosed. The spectrometer includes a fiber input, a collimator lens, a rotating shaft, a grating, a focal lens and a focal plane which have arranged in order. A broadband incident light of the fiber input becomes a first parallel beam through the collimator lens and separated by the grating into multiple parallel beams of different wavelengths and then focused by the focal lens to emit an output beams to an imaging position on the focal plane. The spectrometer can rotate the collimator lens and fiber input to change the imaging position on the focal plane.
Abstract:
An optical measuring apparatus includes a first light source, a second light source and a switching unit. The first light source is used to emit a first light toward a first direction. The second light source is used to emit a second light toward a second direction. The switching unit selectively switches to a first mode or a second mode. When the switching unit switches to the first mode, it blocks the second light and let the first light emitted to an aiming region on eyeball to perform an optical aiming and determine an eye axis center position on the eyeball; when the switching unit switches to the second mode, the switching unit changes the second light from the second direction to the first direction to let the second light emitted to the eye axis center position on the eyeball to perform an optical measurement.
Abstract:
An endoscopy apparatus having high degree of motion freedom and the operating method thereof are disclosed. The endoscopy apparatus having high degree of motion freedom includes a multi-stage endoscopy module and a control module. The multi-stage endoscopy module includes at least a first endoscopy unit and a second endoscopy unit. The first endoscopy unit and the second endoscopy unit can provide a first bending and a second bending respectively. The second bending is larger than the first bending. When the multi-stage endoscopy module moves to a region near a target observing position, the control module will control the second endoscopy unit to generate slight deformation to observe a real-time state of the target observing position.
Abstract:
An optical intraocular pressure measuring apparatus includes a light source, an optical module, a pressure providing module, a deformation measuring module, and a processing module. The light source provides an incident light. The optical module divides the incident light into a first incident light and a second incident light and emits them to a reference object and an object to be detected through a first light path and a second light path, and receives a first reflected light signal from reference object and a second reflected light signal from the object to be detected respectively. The pressure providing module coupled with second light path provides a pressure to deform the object to be detected. The deformation measuring module measures the deformation of the object to be detected. The processing module processes the first reflected light signal and second reflected light signal to generate an intraocular pressure measurement result.
Abstract:
An optical detection device and an operation method thereof is disclosed. The optical detection device includes a light source, an optical coupling element, a reference optical path modulation element and a data processing element. The light source provides an incident light. The optical coupling element divides the incident light into a reference light and a detection light and emits them to the reference optical path modulation element and the sample to be tested respectively. The reference optical path modulation element reflects the reference light and rapidly changes the light path of reference light. The optical coupling element interferes the reference light reflected by the reference optical path modulation element and the detection light reflected by the sample to be tested to generate an optical interference signal. The data processing element receives and analyzes the optical interference signal to obtain an optical detection result about the sample to be tested.
Abstract:
A measurement apparatus used to measure an object is disclosed. The measurement apparatus includes at least one sensing unit, a first optical module, a second optical module, a data processing unit and at least one prompting unit. The at least one sensing unit is disposed near the object to perform a contact or proximity sensing on the object. The first optical module is disposed near the object and adjacent to the at least one sensing unit. The first optical module includes at least one lens unit. The second optical module and the object are disposed at opposite sides of the first optical module. The second optical module includes a light source and at least one optical component. The data processing unit is coupled to at least one sensing unit. The at least one prompting unit is coupled to the data processing unit.
Abstract:
An optical coherence tomography apparatus includes a light source, a light coupling module, and an optical path difference generating module. The light source emits a coherent light. The light coupling module divides the coherent light into a first incident light and a second incident light. The first incident light is emitted to an item to be inspected and a first reflected light is generated. The second incident light is emitted to the optical path difference generating module, a second reflected light is generated according to the second incident light by the optical path difference generating module through changing the transparent/reflection properties of at least one optical devices of the optical path difference generating module, so that there is a optical path difference between the first reflected light and the second reflected light.
Abstract:
An optical system applied to an optical biometer is disclosed. The optical system includes a light source, first and second switchable reflectors, and first and second fixed reflectors. The first switchable reflector is disposed corresponding to the light source. The second switchable reflector is disposed corresponding to an eye. In a first mode, the first and second switchable reflectors are switched to a first state, and the incident light emitted by the light source is reflected by the first fixed reflector along a first optical path and then emitted to a first position of the eye. In a second mode, the first and second switchable reflectors are switched to a second state, and the incident light is sequentially reflected by the first switchable reflector, the second fixed reflector and the second switchable reflector along a second optical path and then emitted to a second position of the eye.
Abstract:
An optical system and an operating method thereof are disclosed. The optical system includes a light source device, a gaze module and a fundus detection device. The light source device includes a light source module, a light intensity modulation module and a lens module. The light source module is used to emit a therapy light to an eye. The light intensity modulation module is used to modulate an intensity of the therapy light. The lens module is used to control a depth of the therapy light. The gaze module is used to be gazed by the eye to fix a fundus of the eye. The fundus detection device and the light source device are integrated to detect the fundus to obtain a fundus image.