Abstract:
An optical measuring apparatus includes a first light source, a second light source and a switching unit. The first light source is used to emit a first light toward a first direction. The second light source is used to emit a second light toward a second direction. The switching unit selectively switches to a first mode or a second mode. When the switching unit switches to the first mode, it blocks the second light and let the first light emitted to an aiming region on eyeball to perform an optical aiming and determine an eye axis center position on the eyeball; when the switching unit switches to the second mode, the switching unit changes the second light from the second direction to the first direction to let the second light emitted to the eye axis center position on the eyeball to perform an optical measurement.
Abstract:
An optical intraocular pressure measuring apparatus includes a light source, an optical module, a pressure providing module, a deformation measuring module, and a processing module. The light source provides an incident light. The optical module divides the incident light into a first incident light and a second incident light and emits them to a reference object and an object to be detected through a first light path and a second light path, and receives a first reflected light signal from reference object and a second reflected light signal from the object to be detected respectively. The pressure providing module coupled with second light path provides a pressure to deform the object to be detected. The deformation measuring module measures the deformation of the object to be detected. The processing module processes the first reflected light signal and second reflected light signal to generate an intraocular pressure measurement result.
Abstract:
A measurement apparatus used to measure an object is disclosed. The measurement apparatus includes at least one sensing unit, a first optical module, a second optical module, a data processing unit and at least one prompting unit. The at least one sensing unit is disposed near the object to perform a contact or proximity sensing on the object. The first optical module is disposed near the object and adjacent to the at least one sensing unit. The first optical module includes at least one lens unit. The second optical module and the object are disposed at opposite sides of the first optical module. The second optical module includes a light source and at least one optical component. The data processing unit is coupled to at least one sensing unit. The at least one prompting unit is coupled to the data processing unit.
Abstract:
An optical system applied to an optical biometer is disclosed. The optical system includes a light source, first and second switchable reflectors, and first and second fixed reflectors. The first switchable reflector is disposed corresponding to the light source. The second switchable reflector is disposed corresponding to an eye. In a first mode, the first and second switchable reflectors are switched to a first state, and the incident light emitted by the light source is reflected by the first fixed reflector along a first optical path and then emitted to a first position of the eye. In a second mode, the first and second switchable reflectors are switched to a second state, and the incident light is sequentially reflected by the first switchable reflector, the second fixed reflector and the second switchable reflector along a second optical path and then emitted to a second position of the eye.
Abstract:
An optical detecting apparatus and an operating method thereof are disclosed. The optical detecting apparatus includes a light path module, an actuating module, and a data processing module. The light path module is used to emit a light source to a substance and receive an optical signal generated by the substance reflecting the light source. The actuating module is used to actuate the substance to generate a vibration. The data processing module is used to record and analyze a detected result related to the material properties of the substance and adjust detecting parameters of the light path module and the actuating module respectively.
Abstract:
A light source module of an optical apparatus is disclosed. The light source module includes a laser pump unit, a lens unit, and a fiber unit. The laser pump unit generates a laser source. The lens unit converts the laser source into a condensed beam. The fiber unit receives the condensed beam and emits an optical signal. The light source module can achieve effects of low cost, large bandwidth, high resolution, and high stability with well-designed pump power of the laser pump unit, and length, doping material, and core size of the fiber unit.
Abstract:
An optical apparatus applied to ophthalmology detection is disclosed. The optical apparatus includes a first light source module, a second light source module, and an interference module. The first light source module is formed by a laser light source and lens units and used to emit a first light signal. The second light source module is formed by fiber units and lens units. The second light source module is coupled to the first light source module in series. The second light source module is used to receive a first light signal and emit a second light signal. The interference module is coupled to the second light source module and used to receive the second light signal and provide a first incident light and a second incident light to an object to be detected and a reference mirror respectively.
Abstract:
The optical apparatus includes an optical measurement module, a central processing module, and an air-puff module. The air-puff module is used for generating an air pressure to a surface of the cornea according a blow pattern to cause a deformation of the cornea. The optical measurement module includes a first unit and a second unit. The first unit is used for measuring an intraocular pressure (IOP) of the eye according to the deformation of the cornea. The second unit is used for measuring properties of the cornea in an optical interference way. The central processing module is coupled to the first unit and the second unit and used for receiving and processing the intraocular pressure and the properties of the cornea to provide a result.