Abstract:
A method for ejecting liquid crystal from a droplet ejection head onto a mother glass substrate is disclosed. The ejecting method includes: substantially equalizing the temperature in the proximity of the droplet ejection head when the droplet ejection head is held in a standby state at a standby position with the temperature in the proximity of the droplet ejection head at the time when the droplet ejection head ejects the liquid crystal onto the mother glass substrate; and moving the droplet ejection head from the standby position to a position at which the mother glass substrate is located, thereby performing ejection of the liquid crystal onto the mother glass substrate.
Abstract:
A method for forming a mark includes ejecting a droplet of a liquid containing a mark forming material onto a surface of an object; radiating a laser beam from a radiation port to a predetermined radiation target position; moving at least one of the object and the radiation port relative to the other in such a manner that the laser beam radiated from the radiation port is radiated onto the droplet on the surface, wherein the droplet forms a mark on the surface by being irradiated with the laser beam; and pivoting the radiation port about the radiation target position as a pivot axis so as to set a radiation angle of the laser beam.
Abstract:
A method for forming a mark includes ejecting a droplet of a liquid from a nozzle onto an ejection target position on a surface of an object along an ejecting direction; radiating a laser beam from a radiation port onto the ejection target position along a radiating direction; and pivoting the nozzle and the radiation port together about the ejection target position as a pivot center, thereby changing the angle between a normal line of the surface of the object and the ejecting direction and the angle between the normal line and the radiating direction while maintaining the angle between the ejecting direction and the radiating direction.
Abstract:
A droplet discharge device includes: a discharge unit discharging a droplet; an information obtaining unit obtaining workload information of the discharge unit while a predetermined pattern is formed on a discharged object; a temperature calculation unit calculating a prediction temperature of the discharge unit while the pattern is formed based on the workload information obtained by the information obtaining unit; and a temperature control unit controlling a temperature of the discharge unit at the prediction temperature calculated by the temperature calculation unit. In the device, the discharge unit and the discharged object of the droplet are relatively moved so as to form the predetermined pattern on the discharged object.
Abstract:
Aspects of the invention can include an imaging step for imaging a region including a plurality of substrates arranged on a pallet having a plurality of housing units by an imaging unit, an actual applying region detecting step for detecting a region corresponding to the plurality of substrates as an actual applying region based on the result of the imaging in the imaging step, and an applying step for applying an orientation film ink from an ink jet head to the plurality of substrates based on the actual applying region. Accordingly, the invention can improve yield.
Abstract:
A droplet ejection apparatus has an ejection unit that ejects a droplet of liquid onto a target. The ejection unit is arranged in a multi-joint robot. The robot moves the ejection unit in a two-dimensional direction above the target. The ejection unit includes a droplet ejection head, a liquid tank, and an auto-seal valve. The auto-seal valve adjusts the pressure of the liquid supplied from the liquid tank to the droplet ejection head to a predetermined pressure. The auto-seal valve has a valve body that is movable between a closing position and an opening position in correspondence with the difference between the pressure of the liquid in the droplet ejection head and the pressure of the liquid in the liquid tank. The valve body is arranged such that the direction of acceleration that produces force capable of moving the valve body from the closing position to the opening position differs from the direction of acceleration of the ejection unit moving in the two-dimensional direction.
Abstract:
A surface plasmon sensor includes a plurality of light supply devices for irradiating a beam, a plurality of surface plasmon resonance detection surfaces where the beam irradiated from the light supply means being incident to, a plurality of light detection devices for detecting the beam reflected at the surface plasmon resonance detection surface, a plurality of reflective surfaces provided at respective optical paths from the light supply devices to the light detection devices, the reflective surfaces being arranged opposing to the respective surface plasmon resonance detection surfaces, a wave formed multiwell formed with the surface plasmon resonance detection surfaces and the reflective surfaces, and the light detection devices positioned close to the light supply means.
Abstract:
A liquid ejection apparatus has an ejecting portion that ejects a droplet of a liquid containing a functional material onto an object. The ejecting portion includes a transmittable member. A laser radiating portion radiates a laser beam onto the transmittable member. The transmittable member divides the laser beam into a first laser beam and a second laser beam. The first laser beam transmits through the transmittable member in such a manner that a radiating position of the first laser beam coincides with a droplet receiving position at which the droplet is received by the object or a position in the vicinity of the droplet receiving position. The second laser beam reaches a position defined on the object different from the radiating position of the first laser beam. This structure ensures accurate laser radiation onto the droplet and efficient drying and baking of the droplet.
Abstract:
A microchannel chip system and a detection chip capable of improving detection precision are provided. The detection chip 1 of the microchannel chip system comprises a carrier retention section 13 capable of retaining a carrier supporting a second chemical substance which generates a signal by reacting with a first chemical substance and a microchannel flow channel 10 provided with a supply flow channel 14 which supplies a liquid material containing the first chemical substance to the carrier retention section 13. A carrier mobilization means (a protrusion 2) is provided for enhancing of the reactivity of the second chemical substance supported in the carrier 9 with the first chemical substance contained in the liquid material by moving the carrier retained in the detection chip 1.
Abstract:
A liquid discharging apparatus that discharges liquid droplets onto a work includes a head that is supplied with discharging liquid to discharge the liquid droplets; a liquid cleaning unit that contains cleaning liquid to be mixed with the discharging liquid adhered to a nozzle surface of the head; and a transport unit that moves the nozzle surface of the head relative to the liquid cleaning unit to remove, from the nozzle surface, the discharging liquid adhered to the nozzle surface.