Abstract:
An exemplary imaging module package includes a lens module and an imaging sensor module. The lens module includes a housing having a hollow top portion and a hollow bottom portion coaxially aligned with the hollow top portion. The imaging sensor module is received in the hollow bottom portion. The imaging sensor module includes an imaging sensor connected to the substrate and secured to the bottom portion, a substrate spaced from the bottom portion and defining at least one recess therein, and a plurality of passive components received in the at least one recess and wholly disposed below the imaging sensor.
Abstract:
An exemplary image sensor package includes a base, an image sensor chip, a bonding layer, and an imaging lens. The image sensor chip is disposed on the base. The image sensor chip includes a photosensitive area. The bonding layer is disposed on at least one of the image sensor chip and the base. The bonding pads surround the photosensitive area. The imaging lens is adhered onto the bonding layer and hermetically seals the photosensitive area with the bonding layer. The imaging lens is configured for forming images on the photosensitive area. The present invention also relates to a method for manufacturing the image sensor package.
Abstract:
A testing system (200) for digital camera modules (100) includes a first testing module (50), an assembling mechanism (60), a focusing module (62), a second testing module (70), a carrying mechanism (80), and a main processor (90). The carrying mechanism supports and transports subassemblies of the digital camera modules and the digital camera modules between the first testing module, the assembling mechanism, the focusing module and the second testing module. The first testing module, the assembling mechanism, the focusing module, the carrying mechanism, and the second testing module are all electronically connected with the main processor.
Abstract:
A chip package includes a carrier (32), an image sensor chip (34), a plurality of wires (36), an adhesive means (3262) and a transparent cover (38). The carrier has a cavity (321) therein. The image sensor chip is received in the cavity, and the image sensor has a photosensitive area (344). Each wire electronically connects the image sensor chip and the carrier. The adhesive means is applied to the image sensor chip around the photosensitive area and covers at least one portion of all the wires adjacent to the photosensitive area. The adhesive means surrounds an enclosing body (3264) around the photosensitive area. The transparent cover is mounted to the carrier, and the cover is adhered to the carrier with the adhesive means. The cover with the enclosing body defines a sealing space (37) for enclosing the photosensitive area of the image sensor chip therein.
Abstract:
A digital camera module package method includes the steps of: firstly, providing a carrier (30), which includes a base (24) and a leadframe (320). The base has a cavity therein and the leadframe includes a number of conductive pieces (322); Secondly, mounting an image sensor chip (34) on the base and received in the cavity, the image sensor having a photosensitive area. Thirdly, providing a plurality of wires (36), each electrically connecting the image sensor chip and a corresponding one of the conductive pieces of the carrier. Fourthly, applying an adhesive means (3262) around the image sensor chip that at least partially covers all the wires. Finally, mounting a transparent cover (38) on the carrier, where an adhesive means fixes the cover in place.
Abstract:
An image sensor chip package method includes the following steps: firstly, a plurality of shaped conductors are provided. Secondly, plastics are injected to partially enclose the conductors, thereby forming a base. Some of the conductors are exposed outside of the base. Thirdly, a ring-like middle portion is further formed on the base by means of injection. The base and the middle portion cooperatively form a space. Fourthly, an image sensor having a plurality of pads is disposed in the space. Fifthly, a number of bonding wires are provided to connect the pads and the conductors. Finally, a cover is secured to the top of the middle portion via an adhesive glue, thereby hermetically sealing the space and allowing light beams to pass therethrough.
Abstract:
An image sensor package includes a first substrate, an image sensor chip, a processing chip and a plurality of passive elements. The first substrate has a supporting surface and a bottom surface opposite to the supporting surface. The image sensor chip is disposed on the supporting surface and electrically connected to the first substrate. The image sensor chip package further includes a second substrate. The processing chip and the passive elements are mounted on the second substrate and electrically connected to the second substrate. The bottom surface of the first substrate defines a cavity for receiving the second substrate, the processing chip and the passive elements therein.
Abstract:
An image sensor package includes an image sensor chip, a sidewall, an encapsulation glass, conductive material, and a plurality of solder balls. The image sensor chip comprises a photosensitive area, a non-photosensitive area surrounding the photosensitive area, and a plurality of bonding pads formed on the non-photosensitive area. The sidewall is located on the non-photosensitive are and defines a plurality of first through holes aligned with and corresponding to the bonding pads. The encapsulation glass is located on the sidewall. A plurality of solder balls are formed on the encapsulation glass aligned with the bonding pads, respectively. The encapsulation glass defines a plurality of second through holes each corresponding to a bonding pad and a corresponding solder ball. The image sensor package further comprises a conductive material through which the first and second through holes penetrate.
Abstract:
An exemplary image sensor package includes a substrate, an imaging area, a circuit layer and two passive components. The substrate has a first surface and a second surface, which are opposite to each other. An image sensing area is formed on the first surface of the substrate and a circuit layer is formed on the second surface of the substrate. The passive components opposite to the image sensing area are soldered to the circuit layer of the second surface.
Abstract:
A chip package (200) includes a carrier (20), a chip (22), a second conductive means (26) and a transparent cover (28). The carrier (20) includes a base (24). The chip is mounted on the base and has an active area (222). The second conductive means electronically connects the chip with the conductive means. The first adhesive means is applied around the active area of the chip. The transparent cover is mounted to the base of the carrier. The cover is adhered with the first adhesive means so as to define a sealing space (32) for sealing the active area of the chip therein. It can be seen that the active area of the chip is sufficiently protected from pollution by the small volume of the sealing space.