Abstract:
An olefin hydrogenation catalyst containing as an essential component a compound represented by the formula: ##STR1## The catalyst is capable of selectively hydrogenating the unsaturated double bonds of the diene units of a conjugated diene polymer or copolymer having a number average molecular weight of 500 to 1,000,000, particularly a styrenebutadiene block copolymer comprising at least one polymer block A composed mainly of styrene and at least one polymer block B composed mainly of 1,3-butadiene and/or isoprene. The hydrogenated block copolymer obtained from such selective hydrogenation is useful as an elastomer, a thermoplastic elastomer or a thermoplastic resin having excellent weather resistance and oxidation resistance.
Abstract:
Disclosed is a polycarbonate diol having diol monomer units and carbonate monomer units, wherein the amount of at least one diol monomer unit selected from the group consisting of a 1,5-pentanediol unit and a 1,6-hexanediol unit is from 50 to 100% by mole, based on the total molar amount of the diol monomer units, and wherein the ratio of primary hydroxyl groups in all terminal groups of the polycarbonate diol is in a specific range. Also disclosed is a thermoplastic polyurethane obtained by copolymerizing the above-mentioned polycarbonate diol and a polyisocyanate.
Abstract:
A polycarbonate diol which is useful as a raw material compound for producing a polycarbonate-based polyurethane having a sufficient mechanical strength and excellent in a balance of physical properties such as oil resistance, hydrolysis resistance, and weather resistance and which is amorphous. The polycarbonate diol includes repeating units of the below-shown formula (A) and the below-shown formula (B), wherein both terminal groups are hydroxyl groups, the ratio of the below-shown formula (A) to the below-shown formula (B) is 99:1 to 1:99 by mol, and number-average molecular weight is 300 to 10,000.
Abstract:
An object of the present invention is to provide a novel polycarbonate diol which is useful as a raw material compound for producing a polycarbonate-based polyurethane having a sufficient mechanical strength and excellent in a balance of physical properties such as oil resistance, hydrolysis resistance, and weather resistance and which is amorphous. The invention relates to a polycarbonate diol comprising repeating units of the below-shown formula (A) and the below-shown formula (B), wherein both terminal groups are hydroxyl groups, the ratio of the below-shown formula (A) to the below-shown formula (B) is 99:1 to 1:99 by mol, and number-average molecular weight is 300 to 10,000.
Abstract:
A process for producing a cushioning article, which comprises: providing an injection molding apparatus having plural injection orifices, said orifices each having a discharge angle from 5° to 45° inclining from the vertical direction; injecting a thermoplastic polymer material in the form of strand from said plural orifices into a mold; and cooling said mold followed by demolding. The discharge angles of said orifices as projected into a horizontal plane each preferably has a phase difference of from 5° to 120° relative to those of adjacent orifices. Also disclosed is a cushioning article molded by the production process.
Abstract:
The present invention relates to a novel thermoplastic elastomer composition with superior oil resistance along with elastomeric flexibility, creep resistance at high temperature, superior mechanical strength and moldability. The composition comprises (a) 100 parts by weight of a hydrogenated block copolymer obtained by hydrogenating a block copolymer comprising at least two A polymer blocks comprised mainly of a vinyl aromatic compound and at least one B polymer block comprised mainly of a conjugated diene compound; and (b) 30-300 parts by weight of a partially crosslinked thermoplastic elastomer obtained by polymerizing an acrylate monomer absorbed in a polyolefin. The novel composition can be applied as a material for various molded parts.
Abstract:
A polycarbonate diol comprising repeating units represented by the following formula (A) and a terminal hydroxy group, 60-100 mol % of the repeating units represented by the formula (A) being repeating units represented by the following formula (B) or (C). The amount of the repeating units represented by the formula (B) is 60-100 mol % based on the total amount of the repeating units represented by the formula (A). The polycarbonate diol has a terminal primary OH ratio of 95% or higher. (A) (In the formula, R represents a C2-12 divalent aliphatic or alicyclic hydrocarbon.)
Abstract:
A polycarbonate diol comprising repeating units represented by the following formula (A) and a terminal hydroxy group. It is characterized in that 60-100 mol % of the repeating units represented by the formula (A) are repeating units represented by the following formula (B) or (C), the amount of the repeating units represented by the formula (B) is 10-50 mol %, excluding 50 mol %, based on the total amount of the repeating units represented by the formula (A), and the polycarbonate diol has a terminal primary OH ratio of 95-98.5%. (A) (In the formula, R represents a C2-12 divalent aliphatic or alicyclic hydrocarbon.)
Abstract:
The present invention provides a gripping part such as a steering wheel and a grip, having a soft feeling equivalent to a RIM urethane and excellent sweat resistance, without the need of coating, which solves problems involved in RIM urethane steering wheels and grips including low productivity, low recycling property, and the like. That is, a gripping part comprising a foamed product of a thermoplastic elastomer with a 1.1 to 8.0 times expansion ratio, wherein the thermoplastic elastomer is a polyurethane elastomer comprises a specific polymer polyol, a polyisocyanate, and as needed, a chain extending agent reactive with the polyisocyanate.
Abstract:
A polycarbonate diol comprising repeating units represented by the following formula (A) and a terminal hydroxy group. It is characterized in that 60-100 mol % of the repeating units represented by the formula (A) are repeating units represented by the following formula (B) or (C), the amount of the repeating units represented by the formula (B) is 10-50 mol %, excluding 50 mol %, based on the total amount of the repeating units represented by the formula (A), and the polycarbonate diol has a terminal primary OH ratio of 95-98.5%. (A) (In the formula, R represents a C2-12 divalent aliphatic or alicyclic hydrocarbon.)