Abstract:
A green sheet including a binder containing an acrylic resin having no polar group and a ceramics material in powder is prepared, and connection via are formed in the green sheet. Further, a conductor layer having virtually no voids is placed on the green sheet and a mask is also placed on the conductor layer. Then, the conductor layer is patterned by wet-etching so that wiring is formed thereon. A plurality of the green sheets thus formed are laminated, and a binding sheet, which contains an inorganic composition that has virtually no sintering shrinkage at the firing temperature of the multi-layered body as a main component, is formed on either both surfaces or one surface of the laminated body, and this is then fired, and thereafter, the binding sheet is removed.
Abstract:
A green sheet including a binder containing an acrylic resin having no polar group and a ceramics material in powder is prepared, and connection via are formed in the green sheet. Further, a conductor layer having virtually no voids is placed on the green sheet and a mask is also placed on the conductor layer. Then, the conductor layer is patterned by wet-etching so that wiring is formed thereon. A plurality of the green sheets thus formed are laminated, and a binding sheet, which contains an inorganic composition that has virtually no sintering shrinkage at the firing temperature of the multi-layered body as a main component, is formed on either both surfaces or one surface of the laminated body, and this is then fired, and thereafter, the binding sheet is removed.
Abstract:
A composite material is provided which includes a discrete phase including grains made of a first substance; and a continuous phase including a thin coating film made of a second substance and formed on the surface of each of the grains. The thin coating film has a mean thickness smaller than the mean particle size of the grains. The grains are separated substantially from each other by the thin coating film. The porosity of the composite material is 5% or less.
Abstract:
A magnetic material is provided which includes a discrete phase including grains made of a first substance which comprises a magnetic metal; and a continuous phase including a thin coating film made of a second substance which comprises a dielectric or insulating substance. The thin coating film is formed on the surface of the grains and has a mean thickness smaller than the mean particle size of the grains. The grains are separated substantially from each other by the thin coating film.
Abstract:
A composite material is provided which includes a discrete phase including grains made of a first substance; and a continuous phase including a thin coating film made of a second substance and formed on the surface of each of the grains. The thin coating film has a mean thickness smaller than the mean particle size of the grains. The grains are separated substantially from each other by the thin coating film. The porosity of the composite material is 5% or less.
Abstract:
A magnetic material is provided which includes a discrete phase including grains made of a first substance which comprises a magnetic metal; and a continuous phase including a thin coating film made of a second substance which comprises a dielectric or insulating substance. The thin coating film is formed on the surface of the grains and has a mean thickness smaller than the mean particle size of the grains. The grains are separated substantially from each other by the thin coating film.
Abstract:
The present invention provides a composite magnetic body containing metallic magnetic powder and thermosetting resin and having a packing ratio of the metallic magnetic powder of 65 vol % to 90 vol % and an electrical resistivity of at least 104 Ω·cm. When a coil is embedded in this composite magnetic body, a miniature magnetic element can be obtained that has a high inductance value and is excellent in DC bias characteristics.
Abstract:
The present invention provides a composite magnetic body containing metallic magnetic powder and thermosetting resin and having a packing ratio of the metallic magnetic powder of 65 vol % to 90 vol % and an electrical resistivity of at least 104 &OHgr;·cm. When a coil is embedded in this composite magnetic body, a miniature magnetic element can be obtained that has a high inductance value and is excellent in DC bias characteristics.
Abstract:
The present invention provides a composite magnetic body containing metallic magnetic powder and thermosetting resin and having a packing ratio of the metallic magnetic powder of 65 vol % to 90 vol % and an electrical resistivity of at least 104 &OHgr;·cm. When a coil is embedded in this composite magnetic body, a miniature magnetic element can be obtained that has a high inductance value and is excellent in DC bias characteristics.
Abstract:
A magnetic element including: a composite magnetic member A containing a metallic magnetic powder in an amount of 50-70 vol. % and a thermosetting resin in an amount of 50-30 vol. %; a magnetic member B that is at least one selected from a ferrite sintered body and a pressed-powder magnetic body of a metallic magnetic powder; and a coil. The magnetic element is characterized in that a magnetic path determined by an arrangement of the coil passes the magnetic member A and the magnetic member B in series and the coil is embedded in the magnetic member A. The present invention also provides a method for manufacturing the magnetic element.