摘要:
A photovoltaic cell has an active area formed electron donor-fullerene conjugated molecules. The electron donor is formed of a polymer, which is conjugated with an electron acceptor, such as fullerene. By conjugating the fullerene, such as C60, with electron donor moieties, such as that of the polymer, double channels are formed therebetween, whereby one channel provides hole transport and the other channel provides electron transport. As a result, the electronic coupling between the fullerene and the electron donor moiety leads to increased short-circuit current density (Jsc) and increased open-circuit voltage (Voc), resulting in high power conversion efficacy (PCE) in the solar cell.
摘要:
An organic polymer photo device with broadband response and high photo-responsitivity includes an anode terminal with a hole transporting network, and a cathode terminal with an electron transporting network. Positioned in electrical communication with the hole transporting network and the electron transporting network is a blended material that has at least one organic polymer light absorbing component. The organic light absorbing component is configured to have a collection length that is larger than the distance to the nearest electron transporting network and hole transporting network. As such, the blended material forms a light absorbing area that has a dimension that is greater than the collection length of the organic polymer light absorbing component.
摘要:
An organic polymer photo device with broadband response and high photo-responsitivity includes an anode terminal with a hole transporting network, and a cathode terminal with an electron transporting network. Positioned in electrical communication with the hole transporting network and the electron transporting network is a blended material that has at least one organic polymer light absorbing component. The organic light absorbing component is configured to have a collection length that is larger than the distance to the nearest electron transporting network and hole transporting network. As such, the blended material forms a light absorbing area that has a dimension that is greater than the collection length of the organic polymer light absorbing component.
摘要:
A wireless self-charging power pack including a solution processed conductive thin film integrating a solar cell with a solid-state supercapacitor. Additionally, a method of forming a wireless self-charging power pack including integrating a solar cell with a solid-state supercapacitor by forming a layer of conductive thin film between the solar cell and the solid-state supercapacitor through solution processing of the material forming the conductive thin film.
摘要:
Perovskite hybrid solar cells utilize a bulk heterojunction (BHJ) active layer that is formed as a composite of an organometal halide perovskite and a water soluble fullerene, such as A10C60. In alternative embodiments, the BHJ active layer may be formed as a composite of an organometal halide perovskite material and a fullerene, such as PC61BM. Thus, the fullerene acts as an electron extraction acceptor within the BHJ, allowing such solar cells to more efficiently transport the electrons from the fullerene/perovskite interface to a fullerene-based electron transport layer (ETL). As a result, increased fill factor (FF), as well as improvements in the short-circuit current density (JSC) and power conversion efficiency (PCE) are achieved by the solar cells.
摘要:
Methods, compositions and articles of manufacture involving soluble conjugated polymers are provided. The conjugated polymers have a sufficient density of polar substituents to render them soluble in a polar medium, for example water and/or methanol. The conjugated polymers may desirably comprise monomers which alter their conductivity properties. The different solubility properties of these polymers allow their deposition in solution in multilayer formats with other conjugated polymers. Also provided are articles of manufacture comprising multiple layers of conjugated polymers having differing solubility characteristics. Embodiments of the invention are described further herein.
摘要:
White light-emitting electrophosphorescent polymeric light-emitting diodes (PLEDs) are demonstrated using semiconducting polymers blended with organometallic emitters as emissive materials in a common region. These materials may be cast from solution. The CIE coordinates, the color temperatures and the color rendering indices of the white emission are insensitive to the brightness, applied voltage and applied current density.
摘要:
A broad-band photodetector utilizes perovskite hybrid material and quantum dots as light harvesters. In particular, the photodetector is configured so that the structural defects on the surface of a quantum dot layer are passivated with perovskite hybrid material. As a result, the trap states on the surface of the quantum dot material is reduced, allowing leakage currents in the quantum dot material to be significantly reduced. As such, the photodetector is able to achieve broad-band operation, with enhanced photoresponsitivity and detectivity.
摘要:
A PEDOT:PSS film having enhanced thermoelectric properties is doped with DMSO and a binary secondary dopant, such as PEO. The composition of such film causes the ratios of PEDOT in bipolaron states to be increased. As a result, the Seebeck coefficient, the electrical conductivities, and power factor of the film are increased, thereby increasing the efficiency of the film. Thus, a thermoelectric device that uses the film is able to achieve enhanced operating performance.
摘要:
A broad-band photodetector utilizes perovskite hybrid material and quantum dots as light harvesters. In particular, the photodetector is configured so that the structural defects on the surface of a quantum dot layer are passivated with perovskite hybrid material. As a result, the trap states on the surface of the quantum dot material is reduced, allowing leakage currents in the quantum dot material to be significantly reduced. As such, the photodetector is able to achieve broad-band operation, with enhanced photoresponsitivity and detectivity.