摘要:
A method of fabricating ESD suppression device includes forming conductive pillars dispersed in a dielectric material. The gaps formed between each pillar in the device behave like spark gaps when a high voltage ESD pulse occurs. When the voltage of the pulse reaches the “trigger voltage” these gaps spark over, creating a very low resistance path. In normal operation, the leakage current and the capacitance is very low, due to the physical gaps between the conductive pillars. The proposed method for fabricating an ESD suppression device includes micromachining techniques to be on-chip with device ICs.
摘要:
The present invention relates to integrating an inertial mechanical device on top of an IC substrate monolithically using IC-foundry compatible processes. The IC substrate is completed first using standard IC processes. A thick silicon layer is added on top of the IC substrate. A subsequent patterning step defines a mechanical structure for inertial sensing. Finally, the mechanical device is encapsulated by a thick insulating layer at the wafer level. Compared with the incumbent bulk or surface micromachined MEMS inertial sensors, vertically monolithically integrated inertial sensors provided by embodiments of the present invention have one or more of the following advantages: smaller chip size, lower parasitics, higher sensitivity, lower power, and lower cost.
摘要:
The present invention relates to a method and device for integrating solar cell on LCD panels for photovoltaic electricity generation for portable electronic devices. According to one embodiment of the present invention, the black matrix region on the color filter substrate in a LCD panel is replaced by a solar cell region. A lens array substrate is coupled between the light source layer and the TFT to focus the backlight to increase the solar cell layer area while maintaining high fill ratio of the LCD pixels. The solar cell material is selected from at least silicon, a single crystal silicon, poly-crystalline silicon, amorphous silicon, gallium arsenide, cadmium telluride, copper indium diselenide, organic/inorganic, or hybrid cells. The substrate material is selected from glass, metal, plastic or polymer.
摘要:
The present invention provides a method and device for fabricating high density memory device. Similar to a Hard Disk Drive (HDD), the integrated memory device is consisted with a rotating media plate and a Read/Write (R/W) head on a movable suspension. Unlike HDD where the media plate is coupled to a motor, the media plate is micro fabricated on a semiconductor substrate and is also a motor which is actuated and rotated by electrostatic forces. The head suspension is also micro fabricated and anchored to an electrostatic comb drive micro actuator. Control IC can also be integrated on-chip with the integrated memory device as well as acceleration sensing devices such as MEMS accelerator for anti-shock measures. The integrated disk storage device is fabricated by conventional semiconductor and MEMS fabrication process technology.
摘要:
A method for forming a patterned silicon bearing material, e.g., silicon substrate. The method includes providing a silicon substrate, which has a surface region and a backside region. The method includes forming a plurality of recessed regions on the surface region. Each of the plurality of recessed regions has a border region. Preferably, the plurality of recessed regions forms a patterned surface region. The method includes bonding (e.g., hermetic bonding or on-hermetic seal) the patterned surface region to a handle surface region of a handle substrate, e.g., glass substrate. Each of the border regions, which protrude outwardly from the recessed regions, is bonded to the handle surface region, while each of the recessed regions remain free from attachment to any surface of the handle surface region. The method includes etching selected regions on the backside to remove a thickness of silicon substrate overlying each of the recessed regions. The method also includes releasing a thickness of material defined within the recessed region while maintaining each of the border regions bonded to the handle surface region to form a plurality of silicon structures bonded to the handle surface region.
摘要:
A three-dimensional integrated circuit device includes a first substrate having a first crystal orientation comprising at least one or more PMOS devices thereon and a first dielectric layer overlying the one or more PMOS devices. The three-dimensional integrated circuit device also includes a second substrate having a second crystal orientation comprising at least one or more NMOS devices thereon; and a second dielectric layer overlying the one or more NMOS devices. An interface region couples the first dielectric layer to the second dielectric layer to form a hybrid structure including the first substrate overlying the second substrate.
摘要:
Protection for infrared sensing device, and more particularly, to a monolithically integrated uncooled infrared sensing device using IC foundry compatible processes. The proposed infrared sensing device is fabricated on a completed IC substrate. In an embodiment, the infrared sensing device has a single crystal silicon plate with an absorbing layer supported a pair of springs. The absorbing layer absorbs infrared radiation and heats up the underlying silicon layer. As a result, an n well in the silicon layer changes its resistance related to its temperature coefficient of resistance (TCR). In another embodiment, the infrared sensing device has a top sensing plate supported by an underlying spring structures. The top sensing plate has sensing materials such as amorphous silicon, poly silicon, SiC, SiGe, Vanadium oxide, or YbaCuO. Finally, a micro lens array is placed on top of the sensing pixel array with a gap in between. In an embodiment, the micro lens array is fabricated on a silicon substrate and bonded to the sensing pixel array substrate. In another embodiment, the micro lens array is fabricated monolithically using amorphous silicon. The micro lens array layer encapsulates the pixel sensing array hermetically, preferably in a vacuum environment.
摘要:
According to a specific embodiment of the present invention, a mask-less lithography method and apparatus is provided. The apparatus includes an integrated write head on a slider with an air bearing that creates a lift force that allows that write head to fly over a spinning wafer substrate in nanometer distance without physical contact. The short distance between the write head and substrate prevents the light from diffracting. As a result, micro and nanometer structures can be patterned without being limited by light diffraction in conventional lithography methods.
摘要:
The present invention relates to a method and device for fabricating an integrated flywheel device using semiconductor materials and IC/MEMS processes. Single crystal silicon has high energy storage/weight ratio and no defects. Single crystal silicon flywheel can operate at much higher speed than conventional flywheel. The integrated silicon flywheel is operated by electrostatic motor and supported by electrostatic bearings, which consume much less power than magnetic actuation in conventional flywheel energy storage systems. The silicon flywheel device is fabricated by IC and MEMS processes to achieve high device integration and low manufacturing cost. For the integrated silicon flywheel, high vacuum can be achieved using hermetic bonding methods such as eutectic, fusion, glass frit, SOG, anodic, covalent, etc. To achieve larger energy capacity, an array of silicon flywheels is fabricated on one substrate. Multiple layers of flywheel energy storage devices are stacked.
摘要:
A monolithically integrated MEMS pressure sensor and CMOS substrate using IC-Foundry compatible processes. The CMOS substrate is completed first using standard IC processes. A diaphragm is then added on top of the CMOS. In one embodiment, the diaphragm is made of deposited thin films with stress relief corrugated structure. In another embodiment, the diaphragm is made of a single crystal silicon material that is layer transferred to the CMOS substrate. In an embodiment, the integrated pressure sensor is encapsulated by a thick insulating layer at the wafer level. The monolithically integrated pressure sensor that adopts IC foundry-compatible processes yields the highest performance, smallest form factor, and lowest cost.