Abstract:
Disclosed is an ink composition comprising water, a colorant, and sodium tetraphenylboride. Another embodiment of the present invention is directed to a set of inks for printing multicolor images in an ink jet printer, the ink set comprising (1) a first ink having a first color and comprising water, a first colorant, and at least one of (a) a cationic polymer, (b) a cationic surfactant, or (c) an inorganic salt the cation of which has a tetraphenylboride salt that is substantially insoluble in water, and (2) a second ink having a second color different from the first color and comprising water, a second colorant, and sodium tetraphenylboride, wherein intercolor bleed between the first ink and the second ink is reduced when the second ink is printed adjacent to, on top of, or underneath the first ink on a print substrate.
Abstract:
Disclosed is an ink composition comprising (a) water, (b) an anionic dye, (c) a polyquaternary amine compound, and (d) a quaternary ammonium substituted UV absorbing compound. Another embodiment of the present invention is directed to an ink composition comprising (a) water, (b) a complex of (i) an anionic dye and (ii) a polyquaternary amine compound, and (c) a quaternary ammonium substituted UV absorbing compound.
Abstract:
Disclosed is a compound of one of the formulae 1 2 wherein R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 each, independently of the others, is an alkyl group, an aryl group, an arylalkyl group, or an alkylaryl group, R11 and R12 each, independently of the others, is an alkylene group, an arylene group, an arylalkylene group, or an alkylarylene group, G is a cationic moiety, A is an anionic moiety, n is an integer representing the number of repeat nullOSi(R7)(R8)null monomer units, a is an integer representing the number of repeat nullOSi(R10)(R12-lightfastness moiety)- monomer units, and c is an integer representing the number of repeat nullOSi(R9)(R11-hydrophilic moiety)- monomer units.
Abstract:
Disclosed is a process which comprises (a) preparing a first solution comprising water and an anionic dye; (b) preparing a second solution comprising water and a polyquaternary amine compound; (c) admixing the first solution and the second solution, thereby causing formation of a complex of the anionic dye and the polyquaternary amine compound and precipitation of the complex from the solution; and (d) isolating the complex thus formed.
Abstract:
A process comprising (a) incorporating into an ink jet printing apparatus (1) a developing composition comprising a liquid vehicle and a color developer; (2) an oxidizing composition comprising a liquid vehicle and an oxidizing agent; (3) a coloring composition comprising a liquid vehicle and a dye coupler; and (4) a fixing composition comprising a liquid vehicle and a fixative; (b) causing droplets of the developing composition to be ejected in an imagewise pattern onto the substrate; (c) causing droplets of the oxidizing composition to be ejected in an imagewise pattern onto the substrate; (d) causing droplets of the coloring composition to be ejected in an imagewise pattern onto the substrate; and (e) causing droplets of the fixing composition to be ejected in an imagewise pattern onto the substrate; wherein the process results in at least some portions of the substrate bearing images comprising all four of the developing composition, the oxidizing composition, the coloring composition, and the fixing composition, said portions forming a printed image. Specific embodiments of the present invention are directed to the realization of continuous tone and gray scale in images by (1) control of the time at which color forming reactions are quenched by controlling the time period between deposition of the color forming liquids and deposition of the fixing liquid; (2) control of the extent of color forming reactions by limitation of the quantity of one of the color forming liquids; or (3) control of pixel size by drop placement control over the overlap areas of drops of color forming liquids.
Abstract:
A process comprising (a) incorporating into an ink jet printing apparatus (1) a developing composition comprising a liquid vehicle and a color developer; (2) an oxidizing composition comprising a liquid vehicle and an oxidizing agent; (3) a coloring composition comprising a liquid vehicle and a dye coupler; and (4) a fixing composition comprising a liquid vehicle and a fixative; (b) causing droplets of the developing composition to be ejected in an imagewise pattern onto the substrate; (c) causing droplets of the oxidizing composition to be ejected in an imagewise pattern onto the substrate; (d) causing droplets of the coloring composition to be ejected in an imagewise pattern onto the substrate; and (e) causing droplets of the fixing composition to be ejected in an imagewise pattern onto the substrate; wherein the process results in at least some portions of the substrate bearing images comprising all four of the developing composition, the oxidizing composition, the coloring composition, and the fixing composition, said portions forming a printed image. Specific embodiments of the present invention are directed to the realization of continuous tone and gray scale in images by (1) control of the time at which color forming reactions are quenched by controlling the time period between deposition of the color forming liquids and deposition of the fixing liquid; (2) control of the extent of color forming reactions by limitation of the quantity of one of the color forming liquids; or (3) control of pixel size by drop placement control over the overlap areas of drops of color forming liquids.
Abstract:
Disclosed is an ink composition which comprises water, a colorant, and a lighffastness agent which is a polysiloxane having thereon a hydrophilic moiety and a lighffastness moiety. Also disclosed are printing processes using the ink.
Abstract:
Disclosed is an ink composition comprising (a) water and (b) a complex of (i) an anionic dye, (ii) an anionic lightfastness-imparting agent, and (iii) a polyquaternary amine compound.
Abstract:
Disclosed is a phase change ink composition comprising a colorant and an ink vehicle, the ink being a solid at temperatures less than about 50null C. and exhibiting a viscosity of no more than about 20 centipoise at a jetting temperature of no more than about 160null C., wherein at a first temperature hydrogen bonds of sufficient strength exist between the ink vehicle molecules so that the ink vehicle forms hydrogen-bonded dimers, oligomers, or polymers, and wherein at a second temperature which is higher than the first temperature the hydrogen bonds between the ink vehicle molecules are sufficiently broken that fewer hydrogen-bonded dimers, oligomers, or polymers are present in the ink at the second temperature than are present in the ink at the first temperature, so that the viscosity of the ink at the second temperature is lower than the viscosity of the ink at the first temperature.
Abstract:
Disclosed is an aqueous ink composition comprising an aqueous liquid vehicle, a colorant, and an additive wherein, when the ink has been applied to a recording substrate in an image pattern and a substantial amount of the aqueous liquid vehicle has either evaporated from the ink image, hydrogen bonds of sufficient strength exist between the additive molecules so that the additive forms hydrogen-bonded oligomers or polymers.