Abstract:
A printhead maintenance module is configured as a replaceable unit. The module includes a frame, at least two rollers detachably mounted within the frame, at least two electric motors, a platen, an optical sensor, and a controller. Each electric motor is operatively connected to one of the rollers in a one-to-one correspondence. The controller is configured to operate one of the electric motors to rotate one of the rollers to move media from a position opposite a printhead where a test pattern is printed on the media to a position opposite the optical sensor, receive image data of the printed test pattern generated by the optical sensor, and identify inoperative ejectors with reference to the image data of the test pattern.
Abstract:
A method for printing on a multi-dimensional object may include creating a customized object holder for the multi-dimensional object via thermoforming. The customized object holder includes at least one datum point for providing registration information corresponding to one or more printable areas of the multi-dimensional object. The method may then include mounting the multi-dimensional object on the customized object holder, attaching the customized object holder to a moving sled of a print system, and controlling the movement of the moving sled relative to a plurality of print heads, and operating the plurality of print heads to eject marking material onto the multi-dimensional object. The movement of the moving sled may be controlled by determining a position of at least one printable area on the multi-dimensional object, and using the determined position to control the movement of the moving sled relative to the plurality of print heads.
Abstract:
A melting device melts solid ink into liquid ink by passing alternating current through an electrical conductor arranged in coils around a housing. The liquid ink passes from a reservoir, through a spool valve arrangement, and into first and second chambers. The spool valve arrangement only allows liquid ink into one chamber at a time. While the first chamber is being filled, pressure is applied to the second chamber. The pressure applied to the second chamber forces the liquid ink in the second chamber through a filter and an outlet. When the first chamber is filled to a predetermined level, pressure is no longer applied to the second chamber and is applied to the first chamber. The pressure applied to the first chamber moves the spool valve arrangement to block the first chamber. While pressure is applied to the first chamber, the second chamber is filled with liquid ink.
Abstract:
Disclosed is a moveable platen cart for handling sheets of substrate media in a printing system. The platen cart includes a cart frame, a media platen, a vacuum port and a valve. The cart frame is configured to translate along a process track. The media platen is secured to the cart frame. The media platen has a foraminous upper surface for receiving a substrate media sheet thereon. The media platen has a subsurface cavity in fluid communication with the foraminous upper surface. The vacuum port is for evacuating air from the cavity. The valve is for selectively closing and opening the vacuum port.
Abstract:
A method for printing on a multi-dimensional object may include creating a customized object holder for the multi-dimensional object by heating a thermoforming sheet to a thermoforming temperature, molding the heated thermoforming sheet around at least a portion of a multi-dimensional object to form a holding portion for the multi-dimensional object, creating one or more printable areas on the molded thermoforming sheet, and applying one or more datum points on the molded thermoformed sheet. The one or more datum points may be configured to provide information relating to position of the one or more printable areas to a print system.
Abstract:
A method for printing on a multi-dimensional object may include creating a customized object holder for the multi-dimensional object by heating a thermoforming sheet to a thermoforming temperature, molding the heated thermoforming sheet around at least a portion of a multi-dimensional object to form a holding portion for the multi-dimensional object, creating one or more printable areas on the molded thermoforming sheet, and applying one or more datum points on the molded thermoformed sheet. The one or more datum points may be configured to provide information relating to position of the one or more printable areas to a print system.
Abstract:
A system and method for printing on a multi-dimensional object includes at least one print head configured to eject marking material onto a surface of the multi-dimensional object, a support member positioned parallel to a plane formed by the at least one print head, and an object holder. The object holder includes a moving frame configured to traverse the support member, at least one granule-filled collapsible membrane configured to be retained within the moving frame and at least partially collapsible around the multi-dimensional object when a volume of air is withdrawn therefrom, and at least one inflatable bladder associated with the moving frame and configured to be inflated to retain the at least one collapsible membrane within the moving frame when air is withdrawn from the at least one collapsible membrane.
Abstract:
An apparatus comprises a bracket connected to a frame, where the bracket connects a light source to the frame. The frame supports a photoreceptor that has a planar surface. Also, the bracket positions the light source at a set distance from the photoreceptor. Further, the bracket comprises an adjustment device that moves the light source along a plane that is parallel to the planar surface of the photoreceptor, and that maintains the light source at the set distance from the photoreceptor as the light source moves within the plane.
Abstract:
Disclosed is a moveable platen cart for handling sheets of substrate media in a printing system. The platen cart includes a cart frame, a media platen, a vacuum port and a valve. The cart frame is configured to translate along a process track. The media platen is secured to the cart frame. The media platen has a foraminous upper surface for receiving a substrate media sheet thereon. The media platen has a subsurface cavity in fluid communication with the foraminous upper surface. The vacuum port is for evacuating air from the cavity. The valve is for selectively closing and opening the vacuum port.
Abstract:
A printer is configured with an actuator to rotate a platen about an axis perpendicular to the surface of the platen and an encoder that generates angular data corresponding to the rotation of the platen. A controller operates the actuator to rotate the platen while monitoring the angular data generated by the encoder to ensure accurate rotation of the platen after each layer of an object is printed. By forming successive layers at different angles to one another, the structural integrity of the object is improved over previously known printed objects and the effects of defective ejectors are mitigated without having to substitute operational ejectors for the defective ejectors.