Abstract:
A magnetic write apparatus has a media-facing surface (MFS) and includes an auxiliary pole, coil(s) and a main pole having a pole tip and a yoke. The pole tip occupies part of the MFS. The yoke has a yoke length measured from the MFS in a yoke direction perpendicular to the MFS. The yoke length is less than four microns. The main pole has a total length in the yoke direction and a width in a cross-track direction. The main pole is continuous along the total length. The aspect ratio of the main pole is the total length divided by the width and exceeds one. The main pole includes surface(s) having a nonzero acute flare angle from the MFS. The auxiliary pole is adjacent to the main pole and recessed from the MFS by not more than 1.05 micron. The coil(s) energizes the main pole and have not more than two turns.
Abstract:
A method provides a magnetic device having an air-bearing surface (ABS) location. A layer including first and second sublayers is provided. The first sublayer includes the ABS location. The second sublayer recessed from the ABS location such that part of the first sublayer is between the second sublayer and the ABS location. The first sublayer has a rear surface oriented at a nonzero, acute angle from a surface perpendicular to the ABS location. A trench is formed in the layer. The trench has a bottom, a top and sidewalls. The sidewalls form a first angle with a direction perpendicular to the bottom at the ABS location. The sidewalls form a second angle with the direction in part of the second sublayer. The second angle is smaller than the first angle. The sidewall angle varies along the rear surface of the first sublayer. A main pole is provided in the trench.
Abstract:
A method and system provide a magnetic transducer having an air-bearing surface (ABS) location. An intermediate is provided. The intermediate layer includes a first sublayer and a second sublayer in at least a side shield region. The first sublayer has a first sublayer top. The second sublayer is on the first sublayer top in the shield region. A trench is formed in the intermediate layer using at least one etch. A main pole is provided in the trench. The main pole has a bottom and a top wider than the bottom. The first sublayer top is between the top and the bottom of the main pole. At least a portion of the second sublayer is removed in the shield region. At least one half side shield is provided. A bottom of the at least one half side shield being between the top and the bottom of the main pole.
Abstract:
A process for manufacturing a PMR writer main pole with non-conformal side gaps is provided. The process may include depositing a stitch layer comprising a magnetic material and a second stitch layer material over a substrate, forming an air-bearing surface (ABS) region in a first damascene material, and forming a yoke region in a second damascene material. The first damascene material may include Aluminum Oxide (Al2O3). The second damascene material may include Silicon Dioxide (SiO2). Side gap regions may include SiO2.
Abstract:
A magnetic write apparatus has a media-facing surface (MFS) and includes an auxiliary pole, coil(s) and a main pole having a pole tip and a yoke. The pole tip occupies part of the MFS. The yoke has a yoke length measured from the MFS in a yoke direction perpendicular to the MFS. The yoke length is less than four microns. The main pole has a total length in the yoke direction and a width in a cross-track direction. The main pole is continuous along the total length. The aspect ratio of the main pole is the total length divided by the width and exceeds one. The main pole includes surface(s) having a nonzero acute flare angle from the MFS. The auxiliary pole is adjacent to the main pole and recessed from the MFS by not more than 1.05 micron. The coil(s) energizes the main pole and have not more than two turns.
Abstract:
A perpendicular magnetic recording (PMR) writer is configured to magnetically record data on a rotatable disk surface. The PMR writer including a pole tip, side shields, an air-bearing surface (ABS) region, a yoke region comprising Silicon Dioxide (SiO2), side gaps and a plurality of throat regions. The side gaps are arranged respectively between the pole tip and the side shields and include SiO2. A side gap width of the plurality of throat regions increases with a side shield throat height above the ABS region for each of the throat regions. The side gap width has a different width variation in each of the throat regions.
Abstract:
A method provides magnetic write apparatus. A side shield location layer having a location corresponding to the side shield(s) and back and side surfaces is provided. Part of the back surface corresponds to the back surface of the side shield. A nonmagnetic layer adjoining the back and side surface(s) of the side shield location layer is provided. A pole trench is formed in the layers using a first etch process. The nonmagnetic and side shield location layers have an etch selectivity of at least 0.9 and not more than 1.1 for the first etch. A pole is provided in the pole trench. A remaining portion of the side shield location layer is removed using a wet etch. The nonmagnetic layer is nonremovable by the wet etch. Side shield(s) having a back surface substantially the same as the back surface of the side shield location layer are provided.
Abstract:
Disclosed are methods for making ultra-narrow track width (TW) read sensors, and read transducers incorporating such sensors. The methods utilize side-wall line patterning techniques to prepare ultra-narrow mill masks that can be used to prepare the ultra-narrow read sensors.
Abstract:
A method manufacturing a magnetic writer provides an intermediate layer including multiple sublayers is provided. The sublayers include first and second nonmagnetic layers and an etch stop layer being between the first and second nonmagnetic layers. A trench is formed in the intermediate layer using at least one etch, such as a reactive ion etch. The trench has a location and profile corresponding to the main pole. A main pole having a bottom and a top is provided in the trench. At least a portion of the second nonmagnetic layer is removed using at least a second etch, such as a wet etch process. The etch stop layer is resistant to the at least the second etch. A half side shield is provided on at least part of the first nonmagnetic layer. The half side shield bottom is between the top and the bottom of the main pole.