摘要:
Elements and methods for forming elements that operate with acoustic waves are disclosed. The element includes a piezoelectric electric substrate that has a first thermal coefficient of expansion, electrically conducting element structures on an upper side of the substrate, a compensation layer on an underside of the substrate, and an SiO2 layer over the element structures.
摘要:
A transversal filter operates using surface acoustic waves and has a piezoelectric substrate and an acoustic track that is arranged on the substrate and in which a first transducer and a second transducer are arranged. Each transducer has electrode fingers. A function, which characterizes the weighting of the overlap length of electrode fingers of different polarity in the second transducer, has a half main lobe and at least one side lobe. The amplitude of the lobes decreases monotonally in a direction that points to the first transducer.
摘要:
A transversal filter operates using surface acoustic waves and has a piezoelectric substrate and an acoustic track that is arranged on the substrate and in which a first transducer and a second transducer are arranged. Each transducer has electrode fingers. A function, which characterizes the weighting of the overlap length of electrode fingers of different polarity in the second transducer, has a half main lobe and at least one side lobe. The amplitude of the lobes decreases monotonally in a direction that points to the first transducer.
摘要:
Elements and methods for forming elements that operate with acoustic waves are disclosed. The element includes a piezoelectric electric substrate that has a first thermal coefficient of expansion, electrically conducting element structures on an upper side of the substrate, a compensation layer on an underside of the substrate, and an SiO2 layer over the element structures.
摘要:
An electroacoustic component includes a carrier substrate and a piezosubstrate having piezoelectric properties. The electroacoustic component also includes a layer system between the carrier substrate and the piezosubstrate.
摘要:
A MEMS component includes a chip that has a rear side having a low roughness of less than one tenth of the wavelength at the center frequency of an acoustic wave propagating in the component. Metallic structures for scattering bulk acoustic waves are provided on the rear side of the chip and a material of the metallic structures is acoustically matched to a material of the chip.
摘要:
Guided bulk acoustic wave devices and method for manufacturing guided bulk acoustic wave devices are provided. A guided bulk acoustic wave device includes a resonator structure with a piezoelectric layer, an electrode layer for exciting guided bulk acoustic waves and a wave guide layer. The thickness of the piezoelectric layer is less than or equal to 50 μm.
摘要:
A component working with guided acoustic waves includes a layer system configured to guide waves in a lateral plane. The layer system includes a piezoelectric layer, electrodes on the piezoelectric layer for exciting the wave, a dielectric layer with an acoustic impedance, and an adjustment layer with an acoustic impedance. A ratio of the acoustic impedance of the adjustment layer to the acoustic impedance of the dielectric layer is greater than 1.5.
摘要:
An electroacoustic component that includes a substrate made of monocrystalline LiNbO3 is disclosed. In the component, a first Euler angle λ of the monocrystalline LiNbO3 is: λ≈0°, a second Euler angle μ of the monocrystalline LiNbO3 is: −74°≦μ≦−52° or 23°≦μ≦36°, and a third Euler angle θ of the monocrystalline LiNbO3 is: θ≈0°.
摘要:
A rotating motion sensor includes at least one electroacoustic resonator to stimulate a surface acoustic wave. The at least one electroacoustic resonator is configured so that rotation of the at least one electroacoustic resonator about an axis of rotation causes a change in resonance frequency of the at least one electroacoustic resonator. The at least one electroacoustic resonator includes oscillating structures configured to oscillate in a first direction that is a direction of propagation of the surface acoustic wave and/or a second direction that is transverse to the direction of propagation of the surface acoustic wave.