Abstract:
An optical cable comprises a swelling yarn, around which several optical transmission elements in the form of micromodules are arranged. A micromodule comprises a bundle of optic fibers, which are surrounded by a sleeve made from a material of plastic. Further swelling yarns are arranged around the optical transmission elements. The optical transmission elements and the swelling yarns are surrounded by a sleeve of paper. The paper sleeve is surrounded by a cable jacket made from a material of plastic. When an optic fiber is exposed, the cable jacket is pulled off, whereupon the paper sleeve tears off and can consequently be easily removed.
Abstract:
An optical cable comprises a plurality of elongate members wherein at least one of the elongate members include at least one optical fiber surrounded by buffer tube. The buffer tube is made of a soft material having a tension at break of less than 7.5 MPa. The elongate members are disposed around a central element. A binder is wrapped around the plurality of elongate members. An outer jacket surrounds the plurality of elongate members.
Abstract:
An apparatus and a method for forming a sheath over an elongate member comprises an extruder that has an output to supply a melt material having a temperature. A heat exchanger connected downstream the output of the extruder removes heat from the melt material in a controlled manner. An elongate member, which may be a cable core, is supplied to a crosshead that is connected downstream the heat exchanger to surround the elongate member with a sheath of the melt material.
Abstract:
An apparatus and a method for forming a sheath over an elongate member comprises an extruder that has an output to supply a melt material having a temperature. A heat exchanger connected downstream the output of the extruder removes heat from the melt material in a controlled manner. An elongate member, which may be a cable core, is supplied to a crosshead that is connected downstream the heat exchanger to surround the elongate member with a sheath of the melt material.
Abstract:
An optical cable comprises a swelling yarn, around which several optical transmission elements in the form of micromodules are arranged. A micromodule comprises a bundle of optic fibers, which are surrounded by a sleeve made from a material of plastic. Further swelling yarns are arranged around the optical transmission elements. The optical transmission elements and the swelling yarns are surrounded by a sleeve of paper. The paper sleeve is surrounded by a cable jacket made from a material of plastic. When an optic fiber is exposed, the cable jacket is pulled off, whereupon the paper sleeve tears off and can consequently be easily removed.
Abstract:
An optical cable comprises a plurality of elongate members wherein at least one of the elongate members include at least one optical fiber surrounded by buffer tube. The buffer tube is made of a soft material having a tension at break of less than 7.5 MPa. The elongate members are disposed around a central element. A binder is wrapped around the plurality of elongate members. An outer jacket surrounds the plurality of elongate members.
Abstract:
An elongate product (BA1) is transported away from its storage device (VT) in such a way that at least one loop (SL) is formed at at least one longitudinal point on its running path (AW2). Changes in the geometric shape of the loop (SL) are registered and used to control or regulate the outward transport movement of the elongate product (BA1).
Abstract:
An apparatus for filling the interspaces between leads of a bundle of leads, which may be optical or electrical leads, with a water-repelling compound characterized by a filling head having a pre-filling chamber and a main filling chamber. The leads are supplied via a common admission channel to the pre-filling chamber which has a channel opening that is selected to be only slightly larger than the diameter of the envelope of the leads combined to form a bundle of leads. The pre-filling chamber is followed by a coating nozzle having a diminished cross section, which coating nozzle receives the bundle and discharges it into the main filling chamber.
Abstract:
The invention relates to a method for the production of an optical transmission element comprising at least one optical waveguide and comprising a chamber element surrounding the optical waveguide and enclosing an internal space. A foamed filler composition is applied discontinuously to the optical waveguide and the optical waveguide is subsequently supplied to an extruder, the latter forming a chamber element around the optical waveguide. The filler composition stabilizes within the chamber element formed and, in the final state, forms a plurality of dry compressible filler elements, each surrounding the optical waveguide. A dry and readily manipulable optical transmission element is thus present. A discharge of filler composition and an escape of the optical waveguides from the transmission element are prevented.
Abstract:
A method and device for winding an elongated element onto a cable product comprises a probe for measuring the tensile stress of the elongated element as it moves from a supply coil to a point for winding the element onto the cable product.