Abstract:
Techniques described herein may be used to provide a driver of a vehicle with an accurate assessment of the remaining life of the vehicle battery. An on-board device may collect information from one or more sensors or devices within the vehicle. The information may be processed to generate a data set that accurately describes the current status and operating conditions of the battery. The data set may be used to evaluate the health of the battery and make predictions regarding the future performance of the battery, which may be communicated to the driver of the vehicle. Machine-learning techniques may be implemented to improve upon methodologies to evaluate the health of the battery and make predictions regarding battery performance.
Abstract:
A method for providing crowd sourced navigation alerts including receiving, at a User Equipment (UE), an Multimedia Broadcast Multicast Service (MBMS) start session message when the UE is located within a predefined MBMS area. The method may further include receiving traffic message data, which includes information regarding at least one traffic event, over the MBMS session, where the traffic message data may be based on at least one traffic notification provided by at least one second UE. The method may also include comparing a distance from the UE to a position of the at least one traffic event described in the traffic message data to at least one threshold, and providing at least one alert associated with the at least one traffic event based on the comparing.
Abstract:
A device may receive sensor data regarding a user device; and determine, based on the sensor data, that a user of the user device is in a vehicle or driving the vehicle. When determining that the user of the user device is in the vehicle or driving the vehicle, the device may compare the sensor data, received from the user device, with a reference dataset that includes reference data associated with users being present in or driving a vehicle, or determine that a value of a measurement, received as part of the sensor data, satisfies a threshold that is related to whether the user is in the vehicle or driving the vehicle. The device may output a particular control instruction to the user device based on determining that the user is in the vehicle or is driving the vehicle.
Abstract:
Techniques described herein may be used to provide a driver of a vehicle with an accurate assessment of the remaining life of the vehicle battery. An on-board device may collect information from one or more sensors or devices within the vehicle. The information may be processed to generate a data set that accurately describes the current status and operating conditions of the battery. The data set may be used to evaluate the health of the battery and make predictions regarding the future performance of the battery, which may be communicated to the driver of the vehicle. Machine-learning techniques may be implemented to improve upon methodologies to evaluate the health of the battery and make predictions regarding battery performance.
Abstract:
A device may receive a request for imaging of a particular location. The device may identify one or more sensors associated with imaging the particular location. The device may select a sensor, of the one or more sensors, for imaging the particular location. The sensor may be associated with an autonomous vehicle. The device may cause the autonomous vehicle to move the sensor to the particular location. The device may receive imaging of the particular location based on causing the autonomous vehicle to move the sensor to the particular location. The device may selectively combine the imaging of the particular location with archived other imaging of the particular location. The device may provide imaging of the particular location to fulfill the request for imaging of the particular location based on selectively combining the imaging of the particular location with archived imaging of the particular location.
Abstract:
A computer device may include logic configured to detect a wake up event that wakes the computer device from an idle mode, wherein the wake up event indicates that a user is getting ready to use a vehicle; obtain accelerometer data from an accelerometer, associated with the vehicle, during a time period that includes the wake up event; determine a number of door slam events during the time period based on the obtained accelerometer data; and determine a number of people in the vehicle based on the determined number of door slam events.
Abstract:
A method for providing crowd sourced navigation alerts including receiving, at a User Equipment (UE), an Multimedia Broadcast Multicast Service (MBMS) start session message when the UE is located within a predefined MBMS area. The method may further include receiving traffic message data, which includes information regarding at least one traffic event, over the MBMS session, where the traffic message data may be based on at least one traffic notification provided by at least one second UE. The method may also include comparing a distance from the UE to a position of the at least one traffic event described in the traffic message data to at least one threshold, and providing at least one alert associated with the at least one traffic event based on the comparing.
Abstract:
A device may receive sensor data regarding a user device; and determine, based on the sensor data, that a user of the user device is in a vehicle or driving the vehicle. When determining that the user of the user device is in the vehicle or driving the vehicle, the device may compare the sensor data, received from the user device, with a reference dataset that includes reference data associated with users being present in or driving a vehicle, or determine that a value of a measurement, received as part of the sensor data, satisfies a threshold that is related to whether the user is in the vehicle or driving the vehicle. The device may output a particular control instruction to the user device based on determining that the user is in the vehicle or is driving the vehicle.
Abstract:
Aerial images, such as images from satellites or other aerial imaging devices, may be used to assist in responding to the occurrence of events (such as vehicle accidents or other emergency events) or conditions. In one implementation, an alert may be received indicating a condition or event associated with a user device. In response, an aerial image associated with the location of the user device may be requested. The alert may be responded to based on the received image. Aerial imaging may also provide views of the road ahead of a driver that terrain, topography, or darkness may otherwise impede. Image recognition may provide analysis of a hazard, condition, or occurrence at a scene that the aerial imaging system has captured and transmitted in response to a request.
Abstract:
Aerial images, such as images from satellites or other aerial imaging devices, may be used to assist in responding to the occurrence of events (such as vehicle accidents or other emergency events) or conditions. In one implementation, an alert may be received indicating a condition or event associated with a user device. In response, an aerial image associated with the location of the user device may be requested. The alert may be responded to based on the received image. Aerial imaging may also provide views of the road ahead of a driver that terrain, topography, or darkness may otherwise impede. Image recognition may provide analysis of a hazard, condition, or occurrence at a scene that the aerial imaging system has captured and transmitted in response to a request.