Abstract:
The invention relates to a method (100) of controlling a vehicle electrical energy storage system having a plurality of battery units connectable to form a battery unit assembly for providing traction power to a vehicle electric propulsion system. The method comprises the steps of selecting (105) a plurality of sub-sets of battery units from the plurality of battery units, determining (120) an alternative operational power (AOPn) of the electrical energy storage system for each sub-set of the plurality of selected sub-sets of battery units, and for the plurality of selected sub-sets of battery units, identify (140) the sub-set having the highest alternative operational power for providing power to the electric propulsion system among the plurality of sub-sets of battery units.
Abstract:
The invention relates to a method for controlling an energy storage system (200) of a vehicle (201), the energy storage system comprising at least one battery pack (202). The method comprises the steps of: —obtaining route planning information relating to an expected travelling route of the vehicle, —determining at least one set operational mode of the energy storage system, —based on at least the obtained route planning information and the at least one set operational mode of the energy storage system, setting a control profile for controlling the energy storage system, —controlling the energy storage system according to the control profile.
Abstract:
Disclosed is a method for determining a value of the state of energy of a rechargeable battery in a vehicle, the battery being connected to an electric consumer; the method including: determining the state of charge as a measure of the present capacity of the battery; and determining the state of energy as an indication of at least the remaining charge and discharge energy of the battery. The disclosed method further includes: calculating and determining the value of the state of energy based on at least one parameter which is related to the operation of the electric consumer and where the at least one parameter varies depending on a mode for operating the vehicle or electric consumer during charging or discharging of the battery. Also disclosed is an arrangement for determining a value of the state of energy of a rechargeable battery in a vehicle.
Abstract:
A method is provided for controlling an energy storage system, the energy storage system including at least two battery modules electrically coupled in parallel to each other. The method includes receiving a signal indicative of a maximum power capability of each of the respective battery modules; assigning a power threshold limit for the at least two battery modules of the energy storage system corresponding to the lowest maximum power capability received from the battery modules; and providing a charge current to the at least two battery modules, the charge current having a current level being proportional to the power threshold limit.
Abstract:
A method for estimation of state-of-health (SOH) characteristics of a battery in hybrid vehicles includes charging and discharging the battery at least one time within an upper region of a state-of-charge (SOC) window, wherein the battery; charging and discharging the battery at least one time within a lower region of the SOC window, calibrating a battery management unit included in the hybrid vehicle by using the reached levels outside the SOC window and estimating the SOH characteristics of the battery during the charge and discharge periods by using the battery management unit.
Abstract:
The present invention relates to a battery unit (14) comprising six battery unit faces (30, 32, 34, 36, 38, 40). The battery unit (14) has a shape that can be inscribed in an imaginary cube having six cube faces such that each battery unit face (30, 32, 34, 36, 38, 40) forms part of a corresponding imaginary cube face, wherein a first battery unit face pair of the battery unit (14) comprises a first battery unit face (30) and a second battery unit face (32). The first battery unit face (30) comprises a first set of anode terminals (42) and a first set of cathode terminals (44), the second battery unit face (32) comprising a second set of anode terminals (46) and a second set of cathode terminals (48). The battery unit (14) is such that the second battery unit face (32) can assume two different positions relative to a first battery unit face (30) of a second battery unit (16) of the same type, wherein:—in a first position, each anode terminal of the second set of anode terminals (46) of the second battery unit face (32) contacts an anode terminal of the first set of anode terminals (42)
Abstract:
The present invention relates to a method of managing an energy storage system (ESS) of a vehicle, wherein the energy storage system has a beginning of life (BOL). The vehicle has at least a first application and a second application, and the energy storage system has a first end of life (EOL1) for the first application and a second end of life (EOL2) for the second application. Further, the ESS has a first lifetime between the BOL and the EOL and a second lifetime between the BOL and the EOL2. The method comprises the steps of: a) determining energy and/or power requirement for the vehicle being in the first application; b) defining energy and/or power of the energy storage system at the beginning of life (BOL) of the energy storage system of the vehicle; c) determining a first state of health value SOH1 at the first end of life (EOL1) of the energy storage system of the vehicle being in the first application; d) determining energy and/or power requirement for the vehicle being in the second application; e) determining a second state of health value SOH2 at the second end of life (EOL2) of the energy storage system if the vehicle is used in the second application.
Abstract:
A method is provided for optimizing the operating lifetime of an energy storage system including a battery pack with a plurality of battery cells. The method includes: measuring the temperature of the battery pack by means of a sensor unit; and measuring at least one further parameter representing an indication of the operating lifetime of the battery pack. Furthermore, the method includes the steps of: detecting whether the parameter reaches a predetermined threshold value indicating that the battery pack is in a condition close to an end of its expected operating lifetime; and, in the event that the threshold value is reached, initiating heating of the battery pack, thereby increasing the temperature of the battery pack to a predetermined value so as to prolong the operating lifetime of the battery pack. A system for optimizing the operating lifetime of an energy storage system is also provided.
Abstract:
A method is provided for determining the reliability of state of health parameter values for a battery including a plurality of battery cells, the method including the steps of receiving, for a state of health parameter, a plurality of measured parameter values for the battery, comparing the measured parameter values with at least one predetermined parameter criterion; and determining that the measured state of health parameter values are reliable if the state of health parameter values fulfil the at least one predetermined parameter criterion. A corresponding system, computer program, and computer readable medium are also provided.