Abstract:
A post manufacture method and apparatus for reducing residual stresses present within a component. The component includes a substrate, a polycrystalline structure coupled thereto, and residual stresses present therein. The method includes obtaining a component from a component category, determining a critical temperature and a critical time period for the component category at which the component becomes structurally impaired, determining a heat treatment temperature and a heat treatment time period based upon the critical temperature and the critical time period, and heating one or more remaining components from the component category to the heat treatment temperature for the heat treatment time period. The apparatus includes a heater defining a heating chamber and a molten bath positioned within the heating chamber. The components are placed within the pre-heated molten bath and isolated from oxygen during heating to the heat treatment temperature for the heat treatment time period.
Abstract:
A method and apparatus for non-destructively determining the wear resistance of an ultra-hard polycrystalline structure after being coupled to a downhole tool using capacitance measurements. The apparatus includes a capacitance measuring device having a positive and negative terminal, a leached component comprising a polycrystalline structure that has been coupled to a downhole tool, a first wire, and a second wire. The first wire electrically couples the positive terminal to a surface of the leached component and the second wire electrically couples the negative terminal to a surface of the downhole tool. The capacitance is measured for the leached component one or more times and compared to a calibration curve that shows a relationship between capacitance values and wear resistance, thereby allowing determination of an estimated wear resistance for the polycrystalline structure.
Abstract:
A post manufacture method and apparatus for reducing residual stresses present within a component. The component includes a substrate, a polycrystalline structure coupled thereto, and residual stresses present therein. The method includes obtaining a component from a component category, determining a critical temperature and a critical time period for the component category at which the component becomes structurally impaired, determining a heat treatment temperature and a heat treatment time period based upon the critical temperature and the critical time period, and heating one or more remaining components from the component category to the heat treatment temperature for the heat treatment time period. The apparatus includes a heater defining a heating chamber and a molten bath positioned within the heating chamber. The components are placed within the pre-heated molten bath and isolated from oxygen during heating to the heat treatment temperature for the heat treatment time period.
Abstract:
A cleaned component having a polycrystalline structure, a method and apparatus for cleaning a leached component to form the cleaned component, and a method for determining the effectiveness of cleaning the leached component. The cleaned component includes a leached layer that has at least a portion of by-product materials removed. The by-product materials were deposited into the leached layer during a leaching process that formed the leached layer. The apparatus and method for cleaning includes a tank, a cleaning fluid placed within the tank, and at least a portion of the leached layer immersed into the cleaning fluid. Optionally, a transducer emits ultrasonic waves into the leached layer. The method for determining the effectiveness of cleaning includes cleaning the leached component to form the cleaned component, measuring one or more capacitance values of the cleaned component, repeating the cleaning and the measuring until achieving a stable lower limit capacitance value.
Abstract:
A method of characterizing a quality of a polycrystalline diamond compact (PDC) cutter includes obtaining a PDC cutter that includes a leached layer and an unleached layer. The unleached layer is positioned adjacent to the leached layer, and the leached layer has at least a portion of a catalyst material removed from therein. The method further includes measuring capacitance values of the PDC cutter at multiple frequencies of an electrical signal provided to the PDC cutter by a capacitance measuring device to measure the capacitance values of the PDC cutter. The method also includes characterizing a quality of the PDC cutter based on a lowest capacitance value from among the capacitance values. Each capacitance value of the capacitance values is measured at a respective frequency of the multiple frequencies of the electrical signal.