Abstract:
The invention provides a composite catalyst containing a first component and a second component. The first component contains a ternary mixed metal oxide. The second component contains a platinum group metal. The composite catalyst is useful for catalyzing the low temperature oxidation of carbon monoxide and hydrocarbons.
Abstract:
An ionic liquid composition comprising a complex of a trihalo aluminum (III) species with at least one organic uncharged ligand comprising a ring structure having at least three ring carbon atoms and at least one ring heteroatom selected from nitrogen and sulfur, wherein the complex is a liquid at a temperature of 100° C. or less. Methods of electroplating aluminum onto a metallic substrate using the above-described ionic liquid composition are also described.
Abstract:
An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphonic acid groups appended thereto.
Abstract:
The invention provides a composite catalyst containing a first component and a second component. The first component contains a ternary mixed metal oxide. The second component contains a platinum group metal. The composite catalyst is useful for catalyzing the low temperature oxidation of carbon monoxide and hydrocarbons.
Abstract:
The invention is directed to a method for fabricating a mesoporous carbon composite material. The method comprises providing a precursor composition and subjecting the precursor material to a curing step followed by carbonization step. The precursor composition comprises (i) a templating component comprised of a linear homopolymer material, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) an acid catalyst.
Abstract:
A polymer composition comprising a covalent triazine framework having the following structure: wherein: each asterisk (*) in A units denotes a point of covalent bonding with an asterisk in B units, and each asterisk (*) in B units denotes a point of covalent bonding with an asterisk in A units; r is an integer of 1-3; R is a fluorinated hydrocarbon containing at least two aromatic rings and at least one ether linkage between aromatic rings; the composition includes a multiplicity of A units and multiplicity of B units; and a portion of the connection points are terminated by endcapping nitrile groups. Also described are methods for producing the polymer and a microporous carbon material produced by pyrolysis of the porous polymer membrane. Also described are methods for using the polymer and microporous carbon material for gas or liquid separation, filtration, or purification.
Abstract:
A fiber useful in the absorption of metal ions from aqueous solutions, the fiber comprising a polyolefin backbone having a diameter of at least 1 micron and having covalently appended on its surface halogen atoms and vinyl-addition polymeric grafts functionalized with metal-binding groups, such as at least one functional group selected from carboxylate, keto, aldo, amino, imino, nitrile, amido, oxime, amidoxime, imide dioxime, and hydroxamate groups. The vinyl-addition polymeric grafts may also be further functionalized with hydrophilic groups different from the metal-binding groups, wherein the hydrophilic groups may be selected from carboxylate, sulfone, sulfonate, phosphonate, alkylammonium, iminium, amide, pyrrolidone, and polyalkyleneglycol groups. Also described are methods for producing the functionalized fibers, and methods for using the functionalized fiber, particularly in extracting metal ions from metal-containing solutions.
Abstract:
The invention provides a composite catalyst containing a first component and a second component. The first component contains a ternary mixed metal oxide. The second component contains a platinum group metal. The composite catalyst is useful for catalyzing the low temperature oxidation of carbon monoxide and hydrocarbons.
Abstract:
A carbon monolith includes a robust carbon monolith characterized by a skeleton size of at least 100 nm, and a hierarchical pore structure having macropores and mesopores.
Abstract:
A method for producing polyacrylonitrile (PAN) fiber, the method comprising: (i) mixing PAN with an ionic liquid in which the PAN is soluble to produce a PAN composite melt in which the PAN is dissolved in the ionic liquid; (ii) melt spinning the PAN composite melt to produce the PAN fiber; and (iii) washing the PAN fiber with a solvent in which the ionic liquid is soluble to substantially remove the ionic liquid from the PAN fiber. Also described herein is a method for producing carbon fiber from the PAN fiber as produced above, the method comprising oxidatively stabilizing the PAN fiber produced in step (iii), followed by carbonizing the stabilized PAN fiber to produce the carbon fiber. The initially produced PAN fiber, stabilized PAN fiber, resulting carbon fiber, and articles made thereof are also described.