Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
A method for treating a surface of a contoured titanium substrate used for adhesively bonded engine components. The method including applying energy from a fiber laser system to a contoured surface of a titanium substrate, the laser energy is distributed to the contoured titanium surface by at least one of direct light of sight, reflection, or scattering of one or more laser beam.
Abstract:
A component to be repaired includes a relatively rigid plate. On a surface that may have been subject to fracture, a resin material is first laid down, then a relatively flexible material is positioned outwardly of the resin material to repair the barrier. A part may also be formed initially with the flexible material. In another feature of this application, a method of forming a barrier includes providing a composite material, and applying a relatively flexible material on a surface of the composite material, and concurrently molding the relatively flexible material with the composite material using a composite mold.
Abstract:
A method for treating a surface of a contoured titanium substrate used for adhesively bonded engine components. The method including applying energy from a fiber laser system to a contoured surface of a titanium substrate, the laser energy is distributed to the contoured titanium surface by at least one of direct light of sight, reflection, or scattering of one or more laser beam.
Abstract:
A fan blade assembly for a gas turbine engine includes a blade body, a blade cover secured to the blade body and an adhesive layer to secure the blade cover to the blade body, the adhesive layer configured to set at ambient temperature. A method of forming a fan blade assembly for a gas turbine engine includes forming a blade body, forming a blade cover separate from the blade body, and adhering the blade cover to the blade body via an adhesive layer located between the blade body and the blade cover, the adhesive layer configured to set at ambient temperature.
Abstract:
Methods and systems for the laser surface treatment on stainless steel alloys and nickel alloys may include a computer may be programmed to set a laser path corresponding to a predetermined geometric pattern. A laser may be coupled to the computer and apply a pulsed laser beam to a contact surface of the substrate along the predefined geometric pattern. The pulsed laser beam may have a laser power between 0.1 W and 100 W, single pulse fluence 1 mJ/mm2 and 1025 mJ/mm2 and a laser speed between 25.4 cm/s and 127 cm/s. The laser may generate an open pore oxide layer on the contact surface of the substrate with a thickness of 0.1-1 μm, an open pore distance of 0.05-1 μm. The open pore oxide layer may have a topography corresponding to the predefined geometric pattern. The topography may contain open pore structures and promote adhesive bond performance.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
A fan of a gas turbine engine includes a plurality of fan blades secured to a rotor, each of the plurality of fan blades having an airfoil secured to the rotor at one end, wherein the airfoil comprises pockets filled with an elastomeric composite.
Abstract:
A process for manufacturing a ceramic matrix composite component, said process comprising inserting at least one fibrous sheet into a resin transfer molding system. The process includes wetting the at least one fibrous sheet with a pre-ceramic polymer resin. The process includes applying a pressure to the at least one fibrous sheet and pre-ceramic polymer resin with an intensifier responsive to thermal expansion and curing the pre-ceramic polymer resin.
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.