Abstract:
The invention relates to a method for detecting bad pixels from a pixel array of a device, for capturing an image, that is sensitive to infrared radiation. The method includes: receiving an input image captured by the pixel system, and calculating a score for a plurality of target pixels including at least some of the pixels from the input image. The score for each target pixel is generated on the basis of k pixels of the input image that are selected in a window of H by H pixels around the target pixel. H is an odd integer greater than or equal to 3, and k is an integer between 2 and 5. Each pixel, from the set formed of the k pixels and the target pixel, share at least one border or corner with another pixel from said set, and the values of the k pixels are at respective distances from the value of the target pixel, the k pixels being selected on the basis of the k distances. The method also includes detecting that at least one of the target pixels is a bad pixel on the basis of the calculated scores.
Abstract:
The invention concerns a method of image processing involving: receiving, by a processing device, an input image (IB) captured by a pixel array sensitive to infrared radiation; determining, based on the input image and on a column component vector (VCOL), a first scale factor (α) by estimating a level of the column spread present in the input image; generating column offset values (α.VCOL(y)) based on the product of the first scale factor with the values of the vector; determining, based on the input image and on a 2D dispersion matrix (IDISP), a second scale factor (β) by estimating a level of the 2D dispersion present in the input image; generating pixel offset values (β.IDISP(x,y)) based on the product of the second scale factor with the values of the matrix; and generating a corrected image (IC′) by applying the column and pixel offset values.
Abstract:
Method of diagnosing the state of signal-forming chains of a detector including an array of detection bolometers, each chain comprising a bolometer, a circuit of stimulation, and a circuit forming a signal according to said stimulation, including forming an image of a substantially uniform scene on the array; applying at least first and second stimulations to the chains; reading the formed signals; and for each chain in a predetermined set, defining a neighborhood of chains; calculating coefficients of a polynomial interpolating the values of signals formed by said chain; calculating, for each chain of the neighborhood, coefficients of a polynomial interpolating the values of signals formed by said neighborhood chain; calculating an average and standard deviation of said coefficients of the neighborhood chains or of the set of neighborhood chains and said chain; and diagnosing if said chain is defective using the coefficients and the calculated average and standard deviation.
Abstract:
A method for detecting infrared radiation includes the steps of: providing a resistive bolometer retina including a plurality of resistive bolometers suspended above a substrate of a bolometric detector; acquiring the infrared radiation by the resistive bolometer retina to produce a plurality of raw read signals provided by the bolometers; correcting a response dispersion of the resistive bolometers in the raw read signals using a gain table, each gain of the gain table being associated with a bolometer of the resistive bolometer retina.
Abstract:
Method of diagnosing the state of signal-forming chains of a detector including an array of detection bolometers, each chain comprising a bolometer, a circuit of stimulation, and a circuit forming a signal according to said stimulation, including forming an image of a substantially uniform scene on the array; applying at least first and second stimulations to the chains; reading the formed signals; and for each chain in a predetermined set, defining a neighborhood of chains; calculating coefficients of a polynomial interpolating the values of signals formed by said chain; calculating, for each chain of the neighborhood, coefficients of a polynomial interpolating the values of signals formed by said neighborhood chain; calculating an average and standard deviation of said coefficients of the neighborhood chains or of the set of neighborhood chains and said chain; and diagnosing if said chain is defective using the coefficients and the calculated average and standard deviation.
Abstract:
A method corrects a gain table by a correction of the response dispersion of resistive bolometers of a bolometric detector of a bolometer retina.The method includes: acquiring read signals from the retina corresponding to a substantially temperature-uniform scene; calculating a correction table g according to relation: g ( i , j ) = R a c _ shut ( i , j ) R a c _ ref ( i , j ) · TCR ref ( i , j ) TCR shut ( i , j ) and correcting the gain table according to relation: G shut ( i , j ) = g ( i , j ) · G ref ( i , j ) N where: (i, j) represent the coordinates of the bolometers in the retina and the tables; Gref and Gshut respectively are the gain table before and after correction; Rac—shut(i, j) and Rac—ref(i, j) are the resistances of bolometer (i, j) at the time of acquisition of the signals and at a previous time; TCRshut(i, j) and TCRref(i, j) are the temperature variation coefficients of bolometer (i, j) at the time of acquisition of the signals and at a previous time; N is a scalar factor for normalizing gain table Gshut.