摘要:
A first partial optical system including a first group of lenses having a positive refractive power, a first concave reflection mirror and a second group of lenses having a positive refractive power, for forming a primary reduced image of an object, a second partial optical system including a second concave reelection mirror and a third group of lenses having a positive refractive power, for further reducing the primary reduced image and refocusing it, and a reflection mirror arranged between the first partial optical system and the second partial optical system, for deflecting a light path are arranged in a sequence as viewed from the object. A good image-forming ability as a projection optical system for fabricating a semiconductor device is attained with a simple construction.
摘要:
A catadioptric optical system includes, in succession from the object side, a first partial optical system having positive refractive power and for forming the primary image of an object, and a second partial optical system having positive refractive power and for forming a secondary image by light from the primary image, and at least one aperture stop may be provided in the optical path of the first partial optical system and at least one aperture stop may be provided in the optical path of the second partial optical system.
摘要:
A catadioptric reduction projection optical system having a structure capable of increasing a numerical aperture without increasing the size of a beam splitter and achieves excellent performance of a semiconductor manufacturing apparatus. The catadioptric reduction projection optical system comprises a first partial optical system having a first lens group, the beam splitter, a lens element, and a concave reflecting mirror to form an intermediate image of a first object, a second partial optical system for forming a reduced image of the intermediate image on a second object, the second partial optical system having a second lens group of a positive refracting power and arranged in an optical path between a second object surface and a surface on which the intermediate image is formed, and a third lens group arranged in an optical path between the beam splitter and the third lens group. The first lens group is arranged in an optical path between the first object and the beam splitter. Light from the first object guided to the concave reflecting mirror through the first lens group, the beam splitter, and the second lens group in the order named. Light reflected by the concave reflecting mirror passes through the second lens group and the beam splitter in the order named and is guided to the surface on which the intermediate image is formed. At least a part of the fourth lens group is arranged in an optical path between the beam splitter and the surface.
摘要:
An inverse telescopic wide angle lens comprises a diaphragm; a front lens group of an integral positive or negative refractive power, positioned in the object side in front of the diaphragm and having a first lens group of a negative refractive power including a negative lens of which an image-side air-contacting surface is formed as an aspherical surface concave to the image side, and a second lens group of a positive refractive power positioned between the first lens group and the diaphragm; and a rear lens group of an integral positive refractive power, positioned behind the diaphragm and having plural lenses. The negative lens in the first lens group is so constructed that the absolute value of the refractive power of the concave surface on the optical axis is larger than that of the refractive power of the surface at the object side on the optical axis, that the curvature of the concave surface decreases monotonously with the distance from the optical axis, and that the form of the concave surface of the negative lens at the image side satisfies a particular condition. The effective diameter of the lens closest to the object in the first lens group is so constructed as to satisfy a particular condition.
摘要:
In order to furnish an optical component and a phase contrast microscope which can indicate difference of phases of a specimen including information of frequency and color, at least two optical mediums are arranged side by side so that a constant difference of the phases is generated.
摘要:
A catoptric reduction projection optical system (5) is provided with a first catoptric optical system (10) that images an object (R) in first (object) plane (OP) into a second plane (12) and forming an intermediate image (II) therein, and a second catoptric optical system (20) that images the intermediate image in the second plane onto a third (image) plane (IP), thereby forming a reduced image of the object in the first (object) plane onto the third (image) plane. The first catoptric optical system comprises a first mirror pair comprising two reflective mirrors (M1, M2). The second catoptric optical system comprises a second mirror pair comprising a convex mirror (M3) and a concave mirror (M4). The system also preferably satisfied a number of design conditions.
摘要:
The present invention relates to an exposure apparatus having a high-performance projection optical system having a relatively large numerical aperture and achieving bitelecentricity and superior correction of aberrations, particularly distortion, in a very wide exposure area. Particularly, the protection optical system according to the present invention is composed of a first lens group G.sub.1 with a positive refracting power, a second lens group G.sub.2 with a negative refracting power, a third lens group G.sub.3 with a positive refracting power, a fourth lens group G.sub.4 with a negative refracting power, and a fifth lens group G.sub.5 with a positive refracting power in order from the side of a first object R. The present invention is directed to finding of suitable ranges of focal lengths for the first to fifth lens groups G.sub.1 -G.sub.5, based on the above arrangement.
摘要:
Microscope objective lenses are disclosed that comprise an axially movable second lens group for correcting aberrations that arise with changes in the thickness of a cover glass or other transparent body situated between the specimen and the objective lens. An objective lens according to one aspect of the invention comprises, in order from the specimen side, first, second, third, and fourth lens groups. The first lens group is positive and comprises a negative lens cemented to a positive lens, the positive lens having a convex surface facing the specimen side. The second lens group is positive and comprises a cemented lens having a cemented surface having negative refractive power. The third lens group is positive and causes a ray bundle from the specimen, propagating divergently from the specimen, to converge toward the optical axis. The fourth lens group is negative and comprises a positive lens cemented to a negative lens, the negative lens having a concave surface facing the image side. Moving the second lens group on the optical axis allows correction of aberrations imparted by a transparent body between the specimen and the objective lens. The objective lens satisfies one or more conditional expressions.
摘要:
The present invention relates to a both-side telecentric projection optical system and an exposure apparatus equipped with this projection optical system. In particular, the projection optical system has a structure for quite favorably correcting various kinds of aberration such as distortion in particular, while securing a relatively broad exposure area and a large numerical aperture.
摘要:
A catadioptric reduction projection optical system having a first lens unit having negative refractive power and widening a light beam from a reticle, a prism type beam splitter for transmitting therethrough a light beam from the first lens unit, a concave reflecting mirror for returning the light beam emerging from the beam splitter to the beam splitter while converging it, and a second lens unit having positive refractive power and converging the light beam returned to the beam splitter and reflected by the beam splitter, and forming the reduced image of a pattern on the reticle on a wafer.