Abstract:
An oil pump for an internal combustion engine is provided with an intake port and a discharge port, each formed in a pump housing. The oil pump has a power pump serving as a first main pump and an electric pump serving as a second auxiliary pump, both of which may be contained in a same pump housing. The power pump is rotated by a driving force of a crankshaft, and the electric pump is rotated by the driving force of an electric motor. This makes it possible to reduce the maximum capacity of the power pump serving as the main pump. In a vehicle operating range where the oil discharging pressure generated by the power pump becomes insufficient, the electric pump serving as the auxiliary pump is operated together with the power pump such that appropriate oil discharging pressure or appropriate oil discharging quantity can be achieved. The electric pump may also be allowed to operate for a period of time after shutting off of the engine.
Abstract:
The invention relates to semiconductor chip mounting substrate for use in semiconductor apparatus, wherein metal material or multi-laminated metal material is coated on its surface and/or lateral faces with thin film of insulated inorganic matter in order to obtain an insulated substrate not only capable of efficiently radiating the heat developed in the semiconductor chip but also having thermal expansion coefficient approximate to that of the semiconductor chip, or further coated with film of Cu or Al so that the substrate is provided with high thermal conductivity and required thermal expansion characteristics thereby enabling to produce semiconductor apparatus highly effective for the acceleration of increase of density, reduction of size and improvement of radiation of IC.
Abstract:
A ceramic compact having excellent high temperature strength, toughness and reliability, which comprises a matrix preferably composed predominantly of silicon nitride and ceramic fibers uniformly dispersed in the matrix and orientated in a desired direction, said matrix and fibers being closely bonded by sintering. This compact is produced, for example, by preparing a shaped body of silicon, for example, in which ceramic fibers are uniformly dispersed by centrifugal casting and then heating and nitriding the shaped body in a nitrogen atmosphere to form a fiber-reinforced silicon nitride sintered compact. The ceramic fibers may include such fibers as aluminum oxide or silicon carbide fibers. Sintering assistants, such as silicon nitride, may be used to prepare the sintered compact.
Abstract:
A method of producing rocket combustors wherein in forming an outer cylin by a powder metallurgical method on the outer side of a cylinder provided on its outer periphery with a cooling wall of channel construction having a plurality of grooves, a low-melting alloy is used as a filler to be filled into the grooves. It is also possible to form the outer cylinder after forming a Cu plating shell on the periphery of the inner cylinder filled with the low-melting alloy.
Abstract:
A method of producing rocket combustors wherein in forming an outer cylin by a powder metallurgical method on the outer side of a cylinder provided on its outer periphery with a cooling wall of channel construction having a plurality of grooves (14), an Ni electroforming layer is formed on the outer side of the outer cylinder, and also a method of producing rocket combustors wherein an outer cylinder is of multilayer construction having two or more layers.
Abstract:
A super hard metal roll assembly and a process for producing it are disclosed. Initially, a powdered mix of super hard metal materials is moulded into a hollow cylindrical moulding. The moulding is then fitted about a super hard metal cylindrical element such as roll, cylinder, pillar or shaft, and sintered to contract to a bushing tightly engaging the outer periphery of the cylindrical element to produce a super hard metal roll assembly. The roll assembly may be further treated in a high temperature and high pressure inert gas in order to eliminate voids at the interface between the bushing and the cylindrical element.
Abstract:
In order to provide cemented carbide, provision is made about tungsten carbide powder which has a grain size not smaller than 1 .mu.m and which is mixed with carbon powder and chromium powder to form raw powder. The tungsten carbide powder is formed by fine primary crystal particles of tungsten carbide and satisfies an inequality given by:Y>0.61-0.33 log (X),where Y denotes a half-value width of (211) crystal planes in tungsten carbide (JCPDS-card 25-1047, d=0.9020) measured by a X-ray diffraction method and where X denotes a grain size measured by the FSSS method. There is also provided a method of producing the composite carbide powder having tungsten carbide powder as a main element, the method comprising the steps of preparing tungsten powder which has a mean grain size not smaller than 1 .mu.m, mixing the tungsten powder with carbon powder and chromium powder into a mixture, and processing the mixture in a predetermined atmosphere into fine primary crystal particles of tungsten carbide. One or more of the following additional components may be added to the mixture: Ta, Mo, Nb and Zr.
Abstract:
This invention relates to a highly hard material coated article which comprises a substrate of tool or part consisting of cermets, cemented carbides, tool steels or stainless steels and at least one highly hard material coated on the surface thereof, selected from the group consisting of carbides, nitrides and carbonitrides of at least one of titanium, zirconium and hafnium and those in which oxygen is dissolved, the coating being formed by an ion plating method wherein the accelerating voltage is high in a short time at the initial stage only, the crystals of the coated film being strongly orientated in the direction of for the surface of the tool or part so that the diffraction intensity ratio of the peak from the {220} plane and the secondly strong diffraction peak in the X-ray diffraction using Cu-K.alpha. ray, that is, the diffraction intensity ratio is 15 or less of the latter to 100 of the former and the half value width of the diffraction peak from the {220} plane of the coating film being 0.8.degree. or more on 2.theta. scale.
Abstract:
This invention relates to a highly hard material coated article which comprises a substrate of tool or part consisting of cermets, cemented carbides, tool steels or stainless steels and at least one highly hard material coated on the surface thereof, selected from the group consisting of carbides, nitrides and carbonitrides of at least one of titanium, zirconium and hafnium and those in which oxygen is dissolved, the coating being formed by an ion plating method wherein the accelerating voltage is high in a short time at the initial stage only, the crystals of the coated film being strongly orientated in the direction of for the surface of the tool or part so that the diffraction intensity ratio of the peak from the {220} plane and the secondly strong diffraction peak in the X-ray diffraction using Cu-K.alpha. ray, that is, the diffraction intensity ratio is 15 or less of the latter to 100 of the former and the half value width of the diffraction peak from the {220} plane of the coating film being 0.8.degree. or more than 2 .theta. scale.
Abstract:
A ceramic sintered body with a high density and high surface smoothness is obtained by sintering a ceramic composition comprising oxides as a substantial or partial component in an atmosphere of CO gas or in a mixture of CO gas and an inert gas.