摘要:
The method of forming a thin film feeds a raw material gas causing a reversible decomposition reaction toward an upper surface of substrate placed on a placing table in a processing container; decomposes the raw material gas with a predetermined decomposing scheme thereby forming a thin film of the raw material gas on the surface of the substrate; and feeds a decomposition restraint gas having a characteristic of restraining a thermal decomposition of the raw material gas separately from the raw material gas toward a peripheral portion of the substrate when the raw material gas is fed to the substrate, thereby restraining the thermal decomposition of the raw material gas and selectively preventing the thin film from being formed in the peripheral portion of the substrate.
摘要:
A time for doping an electrode material on an electrode sheet with a lithium ion can be reduced. The electrode manufacturing apparatus includes a processing chamber 200 to and from which the electrode sheet is loaded and unloaded; and a lithium thermal spraying unit 210 configured to dope a carbon material C with the lithium ion by forming a lithium thin film on the carbon material of the electrode sheet W loaded into the processing chamber while melting and spraying lithium-containing powder. Further, the lithium thermal spraying unit 210 includes a lithium-containing powder supply unit 250 configured to discharge the lithium-containing powder toward the electrode material of the electrode sheet, and at least one heating gas supply unit 260 configured to supply a heating gas that melts the lithium-containing powder discharged from the lithium-containing powder supply unit.
摘要:
A time for doping an electrode material on an electrode sheet with a lithium ion can be reduced. The electrode manufacturing apparatus includes a processing chamber 200 to and from which the electrode sheet is loaded and unloaded; and a lithium thermal spraying unit 210 configured to dope a carbon material C with the lithium ion by forming a lithium thin film on the carbon material of the electrode sheet W loaded into the processing chamber while melting and spraying lithium-containing powder. Further, the lithium thermal spraying unit 210 includes a lithium-containing powder supply unit 250 configured to discharge the lithium-containing powder toward the electrode material of the electrode sheet, and at least one heating gas supply unit 260 configured to supply a heating gas that melts the lithium-containing powder discharged from the lithium-containing powder supply unit.
摘要:
A substrate placing table according to an exemplary embodiment includes a base and an electrostatic chuck provided on the base. The electrostatic chuck includes a lamination layer portion, an intermediate layer, and a covering layer. The lamination layer portion is provided on the base. The intermediate layer is provided on the lamination layer portion. The covering layer is provided on the intermediate layer. The lamination layer portion includes a first layer, an electrode layer, and a second layer. The first layer is provided on the base. The electrode layer is provided on the first layer. The second layer is provided on the electrode layer. The intermediate layer is provided between the second layer and the covering layer and is in close contact with the second layer and the covering layer. The second layer is a resin layer. The covering layer is ceramics.
摘要:
A time for doping an electrode material on an electrode sheet with a lithium ion can be reduced. The electrode manufacturing apparatus includes a processing chamber 200 to and from which the electrode sheet is loaded and unloaded; a rare gas supply unit 230 configured to introduce a rare gas into the processing chamber; an exhaust device 220 configured to exhaust an inside of the processing chamber to a certain vacuum level; and a lithium thermal spraying unit 210 configured to dope a carbon material C with the lithium ion by forming a lithium thin film on the carbon material of the electrode sheet W loaded into the processing chamber while melting and spraying lithium-containing powder.
摘要:
A substrate placing table according to an exemplary embodiment includes a base and an electrostatic chuck provided on the base. The electrostatic chuck includes a lamination layer portion, an intermediate layer, and a covering layer. The lamination layer portion is provided on the base. The intermediate layer is provided on the lamination layer portion. The covering layer is provided on the intermediate layer. The lamination layer portion includes a first layer, an electrode layer, and a second layer. The first layer is provided on the base. The electrode layer is provided on the first layer. The second layer is provided on the electrode layer. The intermediate layer is provided between the second layer and the covering layer and is in close contact with the second layer and the covering layer. The second layer is a resin layer. The covering layer is ceramics.
摘要:
A substrate processing apparatus includes a chamber, a susceptor to receive a substrate and provided in the chamber, a gas supply source to supply a predetermined gas into the chamber, and a high frequency power source to treat the substrate by plasma. The susceptor includes a first ceramics base member including a flow passage to let a coolant pass through, a first conductive layer formed on a principal surface and a side surface on a substrate receiving side of the first ceramics base member, and an electrostatic chuck stacked on the first conductive layer and configured to electrostatically attract the wafer received thereon. A volume of the flow passage is equal to or more than a volume of the first ceramics base member. The high frequency power source is configured to supply high frequency power to the first conductive layer.
摘要:
Provided is a placing table structure which is disposed in a processing container and has a subject to be processed thereon so as to form a thin film on the subject in the processing container by using raw material gas which generates thermal decomposition reaction having reversibility. The placing table structure is provided with a placing table for the purpose of placing the subject to be processed on a placing surface, i.e., an upper surface of the placing table structure, and a decomposition suppressing gas supply means which is arranged in the placing table for the purpose of supplying decomposition suppressing gas, which suppresses thermal decomposition of the raw material gas, toward a peripheral section of the subject placed on the placing surface of the placing table.
摘要:
A substrate placing table according to an exemplary embodiment includes a base and an electrostatic chuck provided on the base. The electrostatic chuck includes a lamination layer portion, an intermediate layer, and a covering layer. The lamination layer portion is provided on the base. The intermediate layer is provided on the lamination layer portion. The covering layer is provided on the intermediate layer. The lamination layer portion includes a first layer, an electrode layer, and a second layer. The first layer is provided on the base. The electrode layer is provided on the first layer. The second layer is provided on the electrode layer. The intermediate layer is provided between the second layer and the covering layer and is in close contact with the second layer and the covering layer. The second layer is a resin layer. The covering layer is ceramics.
摘要:
Disclosed is a method of manufacturing an electrostatic chuck configured to attract a substrate by applying a voltage to a first electrode layer. The method includes forming the first electrode layer on a first resin layer on a base and thermally spraying ceramics or a ceramics-containing material on the first electrode layer. The thermally spraying the ceramic or the ceramics-containing material includes transporting powder of a thermal spray material, introduced into a nozzle from a feeder, by a plasma generation gas and spraying the powder from an opening in a tip end portion of the nozzle, dissociating the sprayed plasma generation gas by electric power of 500 W to 10 kW to generate plasma having a common axis with the nozzle, and forming the powder of the thermal spray material into a liquid phase by the generated plasma to form a film on the first electrode layer.