摘要:
An exemplary method for the temperature correction of a force-measuring device such as a balance is disclosed. The method includes generating, by means of a force-measuring cell, a force measurement signal corresponding to the input force; generating an electrical temperature measurement signal by means of a temperature sensor that is arranged at a distance from the heat-generating components of the force-measuring device, processing the force measurement signal into a temperature-corrected output signal based on the temperature measurement signal and the force measurement signal; and transmitting the output signal to an indicator unit and/or to a further processing unit.
摘要:
An exemplary method for the temperature correction of a force-measuring device such as a balance is disclosed. The method includes generating, by means of a force-measuring cell, a force measurement signal corresponding to the input force; generating an electrical temperature measurement signal by means of a temperature sensor that is arranged at a distance from the heat-generating components of the force-measuring device, processing the force measurement signal into a temperature-corrected output signal based on the temperature measurement signal and the force measurement signal; and transmitting the output signal to an indicator unit and/or to a further processing unit.
摘要:
A gravimetric measuring instrument that contains a weighing cell having a load-transmitting member. A load receiver can be coupled to the load-transmitting member through a releasable connection. A mechanical stop resides on the load-transmitting member, and a mechanical counter stop resides on the load receiver. By means of an eccentric bolt engaging the load receiver and the load-transmitting member, the mechanical stop can be pressed against the mechanical counter stop, whereby the stop can be clamped tight against the counter stop. With this arrangement, the load receiver can be rigidly but releasably secured to the load-transmitting member.
摘要:
In a weighing cell a load receiver is constrained in a mode of planar translatory motion in relation to a stationary part (1). The stationary part (1), configured in the shape of a solid H-profile, has two side plates (3) to which the guide links of a parallelogram mechanism are attached. A base plate (2) connects the side plates (3) and supports the parts, that are required for transmitting a force to be measured from the load receiver to a measuring cell. The force-transmitting parts can be configured either as a monolithic material block or as individually assembled components. (FIG. 1)
摘要:
A gravimetric measuring instrument that contains a weighing cell having a load-transmitting member. A load receiver can be coupled to the load-transmitting member through a releasable connection. A mechanical stop resides on the load-transmitting member, and a mechanical counter stop resides on the load receiver. By means of an eccentric bolt engaging the load receiver and the load-transmitting member, the mechanical stop can be pressed against the mechanical counter stop, whereby the stop can be clamped tight against the counter stop. With this arrangement, the load receiver can be rigidly but releasably secured to the load-transmitting member.
摘要:
A parallel-guiding mechanism has a vertically movable parallel leg that carries a weighing pan. The movable parallel leg is connected by two essentially horizontal parallel guides to a stationary parallel leg installed in a balance, wherein elastic flexure pivots are formed at the ends of the parallel guides. Incisions that reduce the material strength of the parallel leg in at least one appropriate location define at least one adjustment domain, thus forming a deformation zone which is plastically deformed through application of an adjustment force. In this manner, a corner load error of the parallel-guiding mechanism is corrected.
摘要:
A weighing cell module with a force-transfer mechanism that includes a parallel-guiding linkage with a vertically movable parallelogram leg and a spatially fixed parallelogram leg, is equipped with a mounting area for a first weighing-pan support device with a single-point connection of a weighing pan, as well as with a mounting area for a second weighing-pan support device with a multiple-point connection, particularly a four-point connection, of a weighing pan, wherein the first and the second mounting area are each connected to the force-transfer mechanism. As a result, the weighing cell module can be used to manufacture different types of balances in a design family of balances, where each different type within the family is designed for a different maximum load.
摘要:
A force-reduction mechanism for a force-measuring device is made of a monolithic material block (1) and has a stationary support (8), a plurality of levers (9, 15, 17), and coupling elements (11, 14, 16) connecting the levers. The fulcrum (10a) of at least one lever (17) is movable in relation to the stationary support (8). A movable fulcrum (10a) can, e.g., be located on a preceding lever (9), so that the fulcrum (10a) shares the motion of the preceding lever (9). The concept of a movable fulcrum allows a more space-efficient design of the mechanism.
摘要:
A force-measuring device 1, particularly a balance, operates on the principle of electromagnetic force-compensation. An electric coil 53 is arranged to be movable in a magnet system 50. The coil has at least two windings W1, W2 and a current supply device PB having at least two partial current sources PB1, PB2, the current sources each assigned to a corresponding winding. A device CU controls and/or regulates the current supplied to the windings by the partial current sources in such a way that, dependent on a force L acting on the force-measuring device, a current I1, I2 is sent through each of the windings. The sum of the at least two electromagnetic forces which are thereby generated forms the compensation force, while, at the same time, the power dissipated by the coil always takes on a given predetermined value Ptg.
摘要:
A force-measuring device 1, particularly a balance, operates on the principle of electromagnetic force-compensation. An electric coil 53 is arranged to be movable in a magnet system 50. The coil has at least two windings W1, W2 and a current supply device PB having at least two partial current sources PB1, PB2, the current sources each assigned to a corresponding winding. A device CU controls and/or regulates the current supplied to the windings by the partial current sources in such a way that, dependent on a force L acting on the force-measuring device, a current I1, I2 is sent through each of the windings. The sum of the at least two electromagnetic forces which are thereby generated forms the compensation force, while, at the same time, the power dissipated by the coil always takes on a given predetermined value Ptg.