摘要:
An extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
摘要:
A spin accumulation sensor having a three terminal design that allows the free layer to be located at the air bearing surface. A non-magnetic conductive spin transport layer extends from a free layer structure (located at the ABS) to a reference layer structure removed from the ABS. The sensor includes a current or voltage source for applying a current across a reference layer structure. The current or voltage source has a lead that is connected with the non-magnetic spin transport layer and also to electric ground. Circuitry for measuring a signal voltage measures a voltage between a shield that is electrically connected with the free layer structure and the ground. The free layer structure can include a spin diffusion layer that ensures that all spin current is completely dissipated before reaching the lead to the voltage source, thereby preventing shunting of the spin current to the voltage source.
摘要:
An extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
摘要:
A method for manufacturing an extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
摘要:
A spin accumulation sensor having a three terminal design that allows the free layer to be located at the air bearing surface. A non-magnetic conductive spin transport layer extends from a free layer structure (located at the ABS) to a reference layer structure removed from the ABS. The sensor includes a current or voltage source for applying a current across a reference layer structure. The current or voltage source has a lead that is connected with the non-magnetic spin transport layer and also to electric ground. Circuitry for measuring a signal voltage measures a voltage between a shield that is electrically connected with the free layer structure and the ground. The free layer structure can include a spin diffusion layer that ensures that all spin current is completely dissipated before reaching the lead to the voltage source, thereby preventing shunting of the spin current to the voltage source.
摘要:
A Lorenz magnetoresistive sensor having a pair of voltage leads and a pair of current leads. The voltage leads are located at either side of one of the current leads and are separated by a distance that is substantially equal to the length of a bit to be measured. The Lorenz magnetoresistive sensor can be, for example an extraordinary magnetoresistive sensor having a quantum well structure such as a two dimensional electron gas and a shunt structure formed on an edge of the quantum well structure opposite the voltage and current leads.
摘要:
An Extraordinary Magnetoresistive Sensor (EMR Sensor) having wide voltage lead tabs for reduced noise and increased signal to noise ratio. The leads can be formed in a triad structure, wherein a pair of voltage leads is located at either side of a current lead, or can be formed in a diad structure having a single voltage lead located at one side of a current lead.
摘要:
A method for manufacturing an extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
摘要:
A Lorenz magnetoresistive sensor having a pair of voltage leads and a pair of current leads. The voltage leads are located at either side of one of the current leads and are separated by a distance that is substantially equal to the length of a bit to be measured. The Lorenz magnetoresistive sensor can be, for example an extraordinary magnetoresistive sensor having a quantum well structure such as a two dimensional electron gas and a shunt structure formed on an edge of the quantum well structure opposite the voltage and current leads.
摘要:
A method, apparatus, and system are provided for implementing spin-torque oscillator sensing with an enhanced integrated demodulator for hard disk drives. The demodulator receives an input signal from a STO read sensor having an oscillation frequency ω related to the strength of the detected magnetic signal field. The demodulator includes a pair of mixers coupled to a quadrature reference oscillator with respective quadrature components cos(ω0t), and sin(ω0t) of the quadrature reference oscillator being mixed with a received input signal to form signals at the sum and difference frequencies, ω±ω0. Each of these mixer products is lowpass filtered by a respective a lowpass filter to remove the sum frequency components for providing a demodulator output signal that is directly proportional the STO oscillation frequency ω. The demodulator output signal is used for processing by data detection electronics.