Abstract:
A method and apparatus for removably attaching a magnetic target for a photogrammetry system to a surface of a structure. A retaining member may comprise a body, an engagement material associated with the body, and a magnetic material associated with the body. The engagement material may be configured for use in removably attaching the retaining member to the surface of the structure. The magnetic material may be configured for use in removably attaching a magnetic target to the retaining member.
Abstract:
A method and apparatus for forming a number of filler members. The apparatus comprises a surface model generator and an analyzer. The surface model generator generates a first surface model of a surface and a second surface model of a flexible surface. The surface and the flexible surface are to be mated to form a mated surface and a mated flexible surface. The analyzer performs a structural analysis using the first surface model and the second surface model to identify a predicted final shape of the mated flexible surface. The predicted final shape of the mated flexible surface is used to form the number of filler members to fill a number of spaces between the mated surface and the mated flexible surface.
Abstract:
A method for determining characteristics of a shim fittable between first and second bodies, comprising: (a) placing optical targets in respective sets of holes in the first and second bodies; (b) scanning respective surfaces of the first and second bodies using a three-dimensional scanner to acquire point cloud scan data, measured hole vector data and other discrete feature data; (c) processing the point cloud scan data, measured hole vector data and other discrete feature data to derive first deviation values representing the deviation of the surface of the first body from a nominal surface of the first body and second deviation values representing the deviation of the surface of the second body from a nominal surface of the second body; (d) correlating the first deviation values with the second deviation values based on a best fit position of the first body relative to the second body; and (e) computing shim gap values based on the correlated first and second deviation values.
Abstract:
A double eccentric positioning apparatus uses two equal offset eccentric bushings to accurately position a tool (such as a drill bushing) in two dimensions. Miniature servo motors and precise gearing control the rotation of each eccentric bushing, which controls the direction of the offset vectors. The offset vectors are used to determine the final position of the drill bushing. The desired rotation angles can be mathematically calculated based on desired position. The inner eccentric bushing is located concentric to the offset of the outer eccentric bushing. This allows any position, within a radius of two times the eccentric offset, to be achieved. The use of worm gearing on the eccentric bushings prevents back-driving of the servo motors, due to the lead angle of the worm gears, and the friction between the worm wheel and worm gear.
Abstract:
A double eccentric positioning apparatus uses two equal offset eccentric bushings to accurately position a tool (such as a drill bushing) in two dimensions. Miniature servo motors and precise gearing control the rotation of each eccentric bushing, which controls the direction of the offset vectors. The offset vectors are used to determine the final position of the drill bushing. The desired rotation angles can be mathematically calculated based on desired position. The inner eccentric bushing is located concentric to the offset of the outer eccentric bushing. This allows any position, within a radius of two times the eccentric offset, to be achieved. The use of worm gearing on the eccentric bushings prevents back-driving of the servo motors, due to the lead angle of the worm gears, and the friction between the worm wheel and worm gear.
Abstract:
A method for determining characteristics of a shim fittable between first and second bodies, comprising: (a) placing optical targets in respective sets of holes in the first and second bodies; (b) scanning respective surfaces of the first and second bodies using a three-dimensional scanner to acquire point cloud scan data, measured hole vector data and other discrete feature data; (c) processing the point cloud scan data, measured hole vector data and other discrete feature data to derive first deviation values representing the deviation of the surface of the first body from a nominal surface of the first body and second deviation values representing the deviation of the surface of the second body from a nominal surface of the second body; (d) correlating the first deviation values with the second deviation values based on a best fit position of the first body relative to the second body; and (e) computing shim gap values based on the correlated first and second deviation values.
Abstract:
A double eccentric positioning apparatus uses two equal offset eccentric bushings to accurately position a tool in two dimensions. Miniature servo motors and precise gearing control the rotation of each eccentric bushing, which controls the direction of the offset vectors. The offset vectors are used to determine the final position of the drill bushing. The desired rotation angles can be mathematically calculated based on desired position. The inner eccentric bushing is located concentric to the offset of the outer eccentric bushing. This allows any position, within a radius of two times the eccentric offset, to be achieved. The use of worm gearing on the eccentric bushings prevents back-driving of the servo motors, due to the lead angle of the worm gears, and the friction between the worm wheel and worm gear.
Abstract:
A method and apparatus for forming a number of filler members. The apparatus comprises a surface model generator and an analyzer. The surface model generator generates a first surface model of a surface and a second surface model of a flexible surface. The surface and the flexible surface are to be mated to form a mated surface and a mated flexible surface. The analyzer performs a structural analysis using the first surface model and the second surface model to identify a predicted final shape of the mated flexible surface. The predicted final shape of the mated flexible surface is used to form the number of filler members to fill a number of spaces between the mated surface and the mated flexible surface.
Abstract:
A method for determining characteristics of a shim fittable between first and second bodies, comprising: (a) placing optical targets in respective sets of holes in the first and second bodies; (b) scanning respective surfaces of the first and second bodies using a three-dimensional scanner to acquire point cloud scan data, measured hole vector data and other discrete feature data; (c) processing the point cloud scan data, measured hole vector data and other discrete feature data to derive first deviation values representing the deviation of the surface of the first body from a nominal surface of the first body and second deviation values representing the deviation of the surface of the second body from a nominal surface of the second body; (d) correlating the first deviation values with the second deviation values based on a best fit position of the first body relative to the second body; and (e) computing shim gap values based on the correlated first and second deviation values.