III-nitride single-crystal ingot, III-nitride single-crystal substrate, method of manufacturing III-nitride single-crystal ingot, and method of manufacturing III-nitride single-crystal substrate
    1.
    发明授权
    III-nitride single-crystal ingot, III-nitride single-crystal substrate, method of manufacturing III-nitride single-crystal ingot, and method of manufacturing III-nitride single-crystal substrate 有权
    III族氮化物单晶锭,III族氮化物单晶衬底,III族氮化物单晶锭的制造方法以及III族氮化物单晶衬底的制造方法

    公开(公告)号:US08845992B2

    公开(公告)日:2014-09-30

    申请号:US12864874

    申请日:2008-12-24

    CPC classification number: C30B29/403 C30B25/02 C30B29/406 C30B33/12

    Abstract: Affords Group-III nitride single-crystal ingots and III-nitride single-crystal substrates manufactured utilizing the ingots, as well as methods of manufacturing III-nitride single-crystal ingots and methods of manufacturing III-nitride single-crystal substrates, wherein the incidence of cracking during length-extending growth is reduced. Characterized by including a step of etching the edge surface of a base substrate, and a step of epitaxially growing onto the base substrate hexagonal-system III-nitride monocrystal having crystallographic planes on its side surfaces. In order to reduce occurrences of cracking during length-extending growth of the ingot, depositing-out of polycrystal and out-of-plane oriented crystal onto the periphery of the monocrystal must be controlled. A layer of the base substrate edge surface, as just described, where it has been mechanically altered is removed beforehand by etching, whereby crystallographic planes form on the side surfaces of the III-nitride single-crystal ingot that is formed onto the base substrate, which therefore controls depositing-out of polycrystal and out-of-plane oriented crystal and reduces occurrences of cracking.

    Abstract translation: 提供利用晶锭制造的III族氮化物单晶锭和III族氮化物单晶衬底,以及III族氮化物单晶锭的制造方法和III族氮化物单晶衬底的制造方法, 在长度延长生长期间的裂纹减少。 其特征在于包括蚀刻基底衬底的边缘表面的步骤,以及在其基底上外延生长六面体系III族氮化物单晶的步骤,在其侧表面上具有晶面。 为了减少晶锭的长度延长生长期间的裂纹发生,必须控制将多晶和面外取向的晶体沉积到单晶的周围。 如已经机械地改变的刚刚描述的基底边缘表面的层通过蚀刻预先去除,由此在形成在基底基板上的III族氮化物单晶锭的侧表面上形成结晶平面, 因此控制多晶体和面外取向晶体的沉积并减少裂纹发生。

    III-Nitride Single-Crystal Ingot, III-Nitride Single-Crystal Substrate, Method of Manufacturing III-Nitride Single-Crystal Ingot, and Method of Manufacturing III-Nitride Single-Crystal Substrate
    2.
    发明申请
    III-Nitride Single-Crystal Ingot, III-Nitride Single-Crystal Substrate, Method of Manufacturing III-Nitride Single-Crystal Ingot, and Method of Manufacturing III-Nitride Single-Crystal Substrate 有权
    III型氮化物单晶锭,III型氮化物单晶基板,III型氮化物单晶锭的制造方法以及制造III型氮化物单晶基板的方法

    公开(公告)号:US20100322841A1

    公开(公告)日:2010-12-23

    申请号:US12864874

    申请日:2008-12-24

    CPC classification number: C30B29/403 C30B25/02 C30B29/406 C30B33/12

    Abstract: Affords Group-III nitride single-crystal ingots and III-nitride single-crystal substrates manufactured utilizing the ingots, as well as methods of manufacturing III-nitride single-crystal ingots and methods of manufacturing III-nitride single-crystal substrates, wherein the incidence of cracking during length-extending growth is reduced. Characterized by including a step of etching the edge surface of a base substrate, and a step of epitaxially growing onto the base substrate hexagonal-system III-nitride monocrystal having crystallographic planes on its side surfaces. In order to reduce occurrences of cracking during length-extending growth of the ingot, depositing-out of polycrystal and out-of-plane oriented crystal onto the periphery of the monocrystal must be controlled. A layer of the base substrate edge surface, as just described, where it has been mechanically altered is removed beforehand by etching, whereby crystallographic planes form on the side surfaces of the III-nitride single-crystal ingot that is formed onto the base substrate, which therefore controls depositing-out of polycrystal and out-of-plane oriented crystal and reduces occurrences of cracking.

    Abstract translation: 提供利用晶锭制造的III族氮化物单晶锭和III族氮化物单晶衬底,以及III族氮化物单晶锭的制造方法和III族氮化物单晶衬底的制造方法, 在长度延长生长期间的裂纹减少。 其特征在于包括蚀刻基底衬底的边缘表面的步骤,以及在其基底上外延生长六面体系III族氮化物单晶的步骤,在其侧表面上具有晶面。 为了减少晶锭的长度延长生长期间的裂纹发生,必须控制将多晶和面外取向的晶体沉积到单晶的周围。 如已经机械地改变的刚刚描述的基底边缘表面的层通过蚀刻预先去除,由此在形成在基底基板上的III族氮化物单晶锭的侧表面上形成结晶平面, 因此控制多晶体和面外取向晶体的沉积并减少裂纹发生。

    METHOD FOR MANUFACTURING GALLIUM NITRIDE CRYSTAL AND GALLIUM NITRIDE WAFER
    3.
    发明申请
    METHOD FOR MANUFACTURING GALLIUM NITRIDE CRYSTAL AND GALLIUM NITRIDE WAFER 有权
    制造氮化镓晶体和氮化铝膜的方法

    公开(公告)号:US20090194848A1

    公开(公告)日:2009-08-06

    申请号:US12298332

    申请日:2007-04-24

    Abstract: There is provided a method for fabricating a gallium nitride crystal with low dislocation density, high crystallinity, and resistance to cracking during polishing of sliced pieces by growing the gallium nitride crystal using a gallium nitride substrate including dislocation-concentrated regions or inverted-polarity regions as a seed crystal substrate. Growing a gallium nitride crystal 79 at a growth temperature higher than 1,100° C. and equal to or lower than 1,300° C. so as to bury dislocation-concentrated regions or inverted-polarity regions 17a reduces dislocations inherited from the dislocation-concentrated regions or inverted regions 17a, thus preventing new dislocations from occurring over the dislocation-concentrated regions or inverted-polarity regions 17a. This also increases the crystallinity of the gallium nitride crystal 79 and its resistance to cracking during the polishing.

    Abstract translation: 提供了通过使用包括位错集中区域或反极性区域的氮化镓衬底生长氮化镓晶体来制造在切片的研磨期间具有低位错密度,高结晶度和耐龟裂性的氮化镓晶体的方法, 晶种基片。 在高于1100℃并且等于或低于1300℃的生长温度下生长氮化镓晶体79,以便掩埋位错集中区域或反极性区域17a减少从位错集中区域遗留的位错或 反转区域17a,从而防止在位错集中区域或反极性区域17a上发生新的位错。 这也增加了氮化镓晶体79的结晶度及其在抛光过程中的抗开裂性。

    Method for Producing GaxIn1-xN(0<x>) Crystal Gaxin1-xn(0<x<1) Crystalline Substrate, Method for Producing GaN Crystal, GaN Crystalline Substrate, and Product
    5.
    发明申请
    Method for Producing GaxIn1-xN(0) Crystal Gaxin1-xn(0 审中-公开
    生产GaxIn1-xN(0x)晶体Gaxin1-xn(0

    公开(公告)号:US20090032907A1

    公开(公告)日:2009-02-05

    申请号:US11919705

    申请日:2006-08-17

    CPC classification number: C30B25/02 C30B25/10 C30B29/403 C30B29/406

    Abstract: It seems that a conventional method for producing a GaN crystal by using HVPE has a possibility that the crystallinity of a GaN crystal can be improved by producing a GaN crystal at a temperature higher than 1100° C. However, such a conventional method has a problem in that a quartz reaction tube (1) is melted when heated by heaters (5) and (6) to a temperature higher than 1100° C.Disclosed herein is a method for producing a GaxIn1-xN (0≦x≦1) crystal (12) by growing GaxIn1-xN (0≦x≦1) crystal (12) on the surface of a base substrate (7) by the reaction of a material gas, containing ammonia gas and at least one of a gallium halide gas and an indium halide gas, in a quartz reaction tube (1), wherein during the growth of GaxIn1-xN (0≦x≦1) crystal (12), quartz reaction tube (1) is externally heated and base substrate (7) is individually heated.

    Abstract translation: 看来,通过使用HVPE制造GaN晶体的常规方法可能通过在高于1100℃的温度下生成GaN晶体来提高GaN晶体的结晶度。然而,这种常规方法具有问题 因为当加热器(5)和(6)加热时,石英反应管(1)熔化到高于1100℃的温度。本文公开了一种制备GaxIn1-xN(0≤x≤1) )晶体(12)通过使含有氨气体的材料气体与至少一种以上的气体的反应在基底基板(7)的表面上生长GaxIn1-xN(0 <= x <= 1)晶体(12) 在石英反应管(1)中,在GaxIn1-xN(0 <= x <= 1)晶体(12)生长期间,石英反应管(1)被外部加热, 基底基板(7)被单独加热。

    Method for manufacturing gallium nitride crystal and gallium nitride wafer
    6.
    发明授权
    Method for manufacturing gallium nitride crystal and gallium nitride wafer 有权
    制造氮化镓晶体和氮化镓晶片的方法

    公开(公告)号:US08147612B2

    公开(公告)日:2012-04-03

    申请号:US12298332

    申请日:2007-04-24

    Abstract: There is provided a method for fabricating a gallium nitride crystal with low dislocation density, high crystallinity, and resistance to cracking during polishing of sliced pieces by growing the gallium nitride crystal using a gallium nitride substrate including dislocation-concentrated regions or inverted-polarity regions as a seed crystal substrate. Growing a gallium nitride crystal 79 at a growth temperature higher than 1,100° C. and equal to or lower than 1,300° C. so as to bury dislocation-concentrated regions or inverted-polarity regions 17a reduces dislocations inherited from the dislocation-concentrated regions or inverted regions 17a, thus preventing new dislocations from occurring over the dislocation-concentrated regions or inverted-polarity regions 17a. This also increases the crystallinity of the gallium nitride crystal 79 and its resistance to cracking during the polishing.

    Abstract translation: 提供了通过使用包括位错集中区域或反极性区域的氮化镓衬底生长氮化镓晶体来制造在切片的研磨期间具有低位错密度,高结晶度和耐龟裂性的氮化镓晶体的方法, 晶种基片。 在高于1100℃并且等于或低于1300℃的生长温度下生长氮化镓晶体79,以便掩埋位错集中区域或反极性区域17a减少从位错集中区域遗留的位错或 反转区域17a,从而防止在位错集中区域或反极性区域17a上发生新的位错。 这也增加了氮化镓晶体79的结晶度及其在抛光过程中的抗开裂性。

    GROUP III NITRIDE SEMICONDUCTOR CRYSTAL SUBSTRATE AND SEMICONDUCTOR DEVICE
    10.
    发明申请
    GROUP III NITRIDE SEMICONDUCTOR CRYSTAL SUBSTRATE AND SEMICONDUCTOR DEVICE 有权
    III类氮化物半导体晶体基板和半导体器件

    公开(公告)号:US20090127662A1

    公开(公告)日:2009-05-21

    申请号:US12273101

    申请日:2008-11-18

    CPC classification number: H01L29/2003 C30B25/02 C30B29/403

    Abstract: A group III nitride semiconductor crystal substrate has a diameter of at least 25 mm and not more than 160 mm. The resistivity of the group III nitride semiconductor crystal substrate is at least 1×10−4 Ω·m and not more than 0.1 Ω·cm. The resistivity distribution in the diameter direction of the group III nitride semiconductor crystal is at least −30% and not more than 30%. The resistivity distribution in the thickness direction of the group III nitride semiconductor crystal is at least −16% and not more than 16%.

    Abstract translation: III族氮化物半导体晶体基板的直径为至少25mm且不大于160mm。 III族氮化物半导体晶体衬底的电阻率至少为1×10 -4Ω·cm且不大于0.1Ω·cm。 III族氮化物半导体晶体的直径方向的电阻率分布为-30%以上且30%以下。 III族氮化物半导体晶体的厚度方向的电阻率分布为〜16%以上且16%以下。

Patent Agency Ranking