Abstract:
The present disclosure describes structures and methods for a via structure for three-dimensional integrated circuit (IC) packaging. The via structure includes a middle portion that extends through a planar structure and a first end and a second end each connected to the middle portion and on a different side of the planar structure. One or more of the first end and the second end includes one or more of a plurality of vias and a pseudo metal layer.
Abstract:
A method for verifying the design of an IC having a plurality of tiers includes conducting a layout versus schematic (“LVS”) check to separate a plurality of devices of a plurality of design layouts, wherein each design layout corresponds to a respectively different tier having the respective devices. A plurality of adjacent tier connections are generated between one of the devices in respectively different tiers from each other, using a computing device. A first RC extraction for each of the tiers is performed to compute couplings between each of the plurality of devices of the corresponding design layout. A second RC extraction for each of the adjacent tier connections is performed.
Abstract:
The present disclosure describes structures and methods for a via structure for three-dimensional integrated circuit (IC) packaging. The via structure includes a middle portion that extends through a planar structure and a first end and a second end each connected to the middle portion and on a different side of the planar structure. One or more of the first end and the second end includes one or more of a plurality of vias and a pseudo metal layer.
Abstract:
The present disclosure relates to a semiconductor device and a manufacturing method, and more particularly to a semiconductor interposer device. The semiconductor interposer device includes a substrate and a first metallization layer formed on the substrate. A first dielectric layer is formed on the first metallization layer and a second metallization layer is formed on the substrate. A first conducting line is formed in the first metallization layer and second and third conducting lines are formed in the second metallization layer. A metal-insulator-metal (MIM) capacitor is formed in the first dielectric layer and over the first conducting line. The MIM capacitor includes (i) a top capacitor electrode in the first dielectric layer and electrically coupled to the second conducting line; (ii) a bottom capacitor electrode in the first dielectric layer and above the first conducting line, wherein the bottom capacitor electrode is configured to be electrically floating; and (iii) a second dielectric layer between the top and bottom capacitor electrodes.
Abstract:
The present disclosure describes structures and methods for a via structure for three-dimensional integrated circuit (IC) packaging. The via structure includes a middle portion that extends through a planar structure and a first end and a second end each connected to the middle portion and on a different side of the planar structure. One or more of the first end and the second end includes one or more of a plurality of vias and a pseudo metal layer.
Abstract:
A method for timing analysis includes using the processor to determine an impedance profile of a coupling between at least a first inter-level via (ILV) and a a second ILV or a device, as a function of at least different frequency values. The impedance profile includes a plurality of impedance values corresponding to respective frequency values. An effective capacitance value corresponding to each respective impedance value is determined. At least one table is provided with respective impedance values and respective effective capacitance values for each respective frequency value. An RC extraction of a design layout of an ILV circuit is conducted using the populated table and based on determined effective capacitance values.