Abstract:
A method of forming an MTJ memory cell and/or an array of such cells is provided wherein each such cell has a small circular horizontal cross-section of 1.0 microns or less in diameter and wherein the ferromagnetic free layer of each such cell has a magnetic anisotropy produced by a magnetic coupling with a thin antiferromagnetic layer that is formed on the free layer. The MTJ memory cell so provided is far less sensitive to shape irregularities and edge defects than cells of the prior art.
Abstract:
An MRAM array of MTJ memory cells is provided wherein each such cell is a layered MTJ structure located at an intersection of a word and bit line and has a small circular horizontal cross-section of 1.0 microns or less in diameter and wherein the ferromagnetic free layer of each such cell has a magnetic anisotropy produced by a magnetic coupling with a thin antiferromagnetic layer that is formed on the free layer. The array of MTJ memory cells so provided is far less sensitive to shape irregularities and edge defects of individual cells than arrays of the prior art.
Abstract:
An MTJ memory cell and/or an array of such cells is provided wherein each such cell has a small circular horizontal cross-section of 1.0 microns or less in diameter and wherein the ferromagnetic free layer of each such cell has a magnetic anisotropy produced by a magnetic coupling with a thin antiferromagnetic layer that is formed on the free layer. The MTJ memory cell so provided is far less sensitive to shape irregularities and edge defects than cells of the prior art.
Abstract:
An MTJ memory cell and/or an array of such cells is provided wherein each such cell has a small circular horizontal cross-section of 1.0 microns or less in diameter and wherein the ferromagnetic free layer of each such cell has a magnetic anisotropy produced by a magnetic coupling with a thin antiferromagnetic layer that is formed on the free layer. The MTJ memory cell so provided is far less sensitive to shape irregularities and edge defects than cells of the prior art.
Abstract:
An MRAM array of MTJ memory cells is provided wherein each such cell is a layered MTJ structure located at an intersection of a word and bit line and has a small circular horizontal cross-section of 1.0 microns or less in diameter and wherein the ferromagnetic free layer of each such cell has a magnetic anisotropy produced by a magnetic coupling with a thin antiferromagnetic layer that is formed on the free layer. The array of MTJ memory cells so provided is far less sensitive to shape irregularities and edge defects of individual cells than arrays of the prior art.
Abstract:
As track density requirements for disk drives have grown more aggressive, GMR devices have been pushed to narrower track widths to match the track pitch of the drive width. Narrower track widths degrade stability, cause amplitude loss, due to the field originating from the hard bias structure, and side reading. This problem has been overcome by adding an additional layer of soft magnetic material above the hard bias layers. The added layer provides flux closure to the hard bias layers thereby preventing flux leakage into the gap region. A non-magnetic layer must be included to prevent exchange coupling to the hard bias layers. In at least one embodiment the conductive leads are used to accomplish this. A process for manufacturing the device is also described.
Abstract:
As track density requirements for disk drives have grown more aggressive, GMR devices have been pushed to narrower track widths to match the track pitch of the drive width. Narrower track widths degrade stability, cause amplitude loss, due to the field originating from the hard bias structure, and side reading. This problem has been overcome by adding an additional layer of soft magnetic material above the hard bias layers. The added layer provides flux closure to the hard bias layers thereby preventing flux leakage into the gap region. A non-magnetic layer must be included to prevent exchange coupling to the hard bias layers. In at least one embodiment the conductive leads are used to accomplish this.
Abstract:
An MRAM array structure and a method of its operation that is not subject to accidental writing on half-selected elements. Each element of the MRAM is an MTJ (magnetic tunneling junction) cell operating in accord with an STT (spin torque transfer) scheme for changing its free layer magnetization state and each cell is patterned to have a C-shape in the horizontal plane. The cell thereby operates by C-mode switching to provide stability against accidental writing by half-selection. During operation, switching of a cell's magnetization is accomplished with the assist of the pulsed magnetic fields of additional word lines that are formed either orthogonal to or parallel to the existing bit lines and that can carry currents in either direction as required to provide the assist.
Abstract:
An MRAM that is not subject to accidental writing of half-selected memory elements is described, together with a method for its manufacture. The key features of this MRAM are a C-shaped memory element used in conjunction with a segmented bit line architecture.
Abstract:
We describe the manufacturing process for and structure of a CPP MTJ MRAM unit cell that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer. The strength of the switching field, Hs of the cell is controlled by the magnetic anisotropy of the cell which, in turn, is controlled by a combination of the shape anisotropy and the stress and magnetostriction of the cell free layer. The coefficient of magnetostriction of the free layer can be adjusted by methods such as adding Nb or Hf to alloys of Ni, Fe, Co and B or by forming the free layer as a lamination of layers having different values of their coefficients of magnetostriction. Thus, by tuning the coefficient of magnetostriction of the cell free layer it is possible to produce a switching field of sufficient magnitude to render the cell thermally stable while maintaining a desirable switching current.