摘要:
Spatial distortion (i.e., when a frame is viewed independently of other frames in a video sequence) may be quite different from temporal distortion (i.e., when frames are viewed continuously). To estimate temporal distortion, a sliding window approach is used. Specifically, multiple sliding windows around a current frame are considered. Within each sliding window, a large distortion density is calculated and a sliding window with the highest large distortion density is selected. A distance between the current frame and the closest frame with large distortion in the selected window is calculated. Subsequently, the temporal distortion is estimated as a function of the highest large distortion ratio, the spatial distortion for the current frame, and the distance. In another embodiment, a median of spatial distortion values is calculated for each sliding window and the maximum of median spatial distortion values is used to estimate the temporal distortion.
摘要:
Because neighboring frames may affect how a current frame is perceived, we examine different neighborhoods of the current frame and select a neighborhood that impacts the perceived temporal distortion (i.e., when frames are viewed continuously) of the current frame most significantly. Based on spatial distortion (i.e., when a frame is viewed independently of other frames in a video sequence) of frames in the selected neighborhood, we can estimate initial temporal distortion. To refine the initial temporal distortion, we also consider the distribution of distortion in the selected neighborhood, for example, the distance between the current frame and a closest frame with large distortion, or whether distortion occurs in consecutive frames.
摘要:
A macroblock in a video sequence may be undecodable because the corresponding compressed data is lost or the syntax is out of synchronization. An undecodable macroblock may be concealed using error concealment technique. The level of initial visible artifacts caused by undecodable macroblocks may be estimated as a function of motion magnitude, error concealment distance, and/or residual energy. The initial visible artifacts may propagate spatially or temporally to other macroblocks through prediction. Considering both initial visible artifacts and propagated artifacts, levels of overall artifacts may be estimated for individual macroblocks. The visual quality for the video sequence can then be estimated by pooling the macroblock level artifact levels.
摘要:
A method for estimating video quality on bit-stream level, wherein the video quality refers to a video after error concealment and the method is performed on bit-stream level before said error concealment, comprises extracting and/or calculating a plurality of global condition features from a video bit-stream, extracting and/or calculating a plurality of local effectiveness features at least for a lost MB, calculating a numeric error concealment effectiveness level for each (or at least for each lost) MB by emulating an error concealment method that is used in said error concealment, and providing the calculated error concealment effectiveness level as an estimated visible artifacts level of video quality.
摘要:
Methods and systems for scheduling wake/sleep cycles by a central device in a wireless network that have at least one mobile device include determining a system reference cycle as a minimum value of a delay constraint on a real-time service for each mobile device of the at least one mobile device that has a real-time service. A wake/sleep cycle length is attributed to each mobile device. The wake/sleep cycle length is an integer multiple of the system reference cycle such that a wake/sleep cycle length of a first mobile device is different from that of a second mobile device. A sleep period and a wake period are assigned within the wake/sleep cycle of each mobile device. The wake/sleep cycle of each mobile device is arranged to avoid collision of the wake period with those of other mobile devices.
摘要:
Methods and systems for scheduling wake/sleep cycles by a central device in a wireless network that have at least one mobile device include determining a system reference cycle as a minimum value of a delay constraint on a real-time service for each mobile device of the at least one mobile device that has a real-time service. A wake/sleep cycle length is attributed to each mobile device. The wake/sleep cycle length is an integer multiple of the system reference cycle such that a wake/sleep cycle length of a first mobile device is different from that of a second mobile device. A sleep period and a wake period are assigned within the wake/sleep cycle of each mobile device. The wake/sleep cycle of each mobile device is arranged to avoid collision of the wake period with those of other mobile devices.
摘要:
When a scene moves homogeneously or fast, human eyes become sensitive to freezing artifacts. To measure the strength of motion homogeneity, a panning homogeneity parameter is estimated to account for isotropic motion vectors, for example, caused by camera panning, tilting, and translation, a zooming homogeneity 5 parameter is estimated for radial symmetric motion vectors, for example, caused by camera zooming, and a rotation homogeneity parameter is estimated for rotational symmetric motion vectors, for example, caused by camera rotation. Subsequently, an overall motion homogeneity parameter is estimate based on the panning, zooming, and rotation homogeneity parameters. A freezing distortion factor can then 10 be estimated using the overall motion homogeneity parameter. The freezing distortion factor, combined with compression and slicing distortion factors, can be used to estimate a video quality metric. parameter
摘要:
Spatial distortion (i.e., when a frame is viewed independently of other frames in a video sequence) may be quite different from temporal distortion (i.e., when frames are viewed continuously). To estimate temporal distortion, a sliding window approach is used. Specifically, multiple sliding windows around a current frame are considered. Within each sliding window, a large distortion density is calculated and a sliding window with the highest large distortion density is selected. A distance between the current frame and the closest frame with large distortion in the selected window is calculated. Subsequently, the temporal distortion is estimated as a function of the highest large distortion ratio, the spatial distortion for the current frame, and the distance. In another embodiment, a median of spatial distortion values is calculated for each sliding window and the maximum of median spatial distortion values is used to estimate the temporal distortion.
摘要:
Because neighboring frames may affect how a current frame is perceived, we examine different neighborhoods of the current frame and select a neighborhood that impacts the perceived temporal distortion (i.e., when frames are viewed continuously) of the current frame most significantly. Based on spatial distortion (i.e., when a frame is viewed independently of other frames in a video sequence) of frames in the selected neighborhood, we can estimate initial temporal distortion. To refine the initial temporal distortion, we also consider the distribution of distortion in the selected neighborhood, for example, the distance between the current frame and a closest frame with large distortion, or whether distortion occurs in consecutive frames.
摘要:
To estimate content complexity of a video, energy of prediction residuals is calculated. The prediction residuals are usually smaller when the video is less complex and more predictable. Scales of prediction residuals also depend on encoding configurations, for example, I pictures usually have larger prediction residuals than P and B pictures even when the contents are very similar and thus have similar perceived content complexity. To more closely reflect the content complexity, alignment scaling factors are estimated for different encoding configurations. Based on the energy of prediction residuals and alignment scaling factors, an overall content unpredictability parameter can be estimated to compute a compression distortion factor for the video. The compression distortion factor, combined with slicing and freezing distortion factors, can be used to estimate a video quality metric for the video.