Low electromagnetic interference and switch loss motor driver

    公开(公告)号:US11218072B2

    公开(公告)日:2022-01-04

    申请号:US16459814

    申请日:2019-07-02

    Abstract: Modulating a gate drive current supplied to an output drive switch coupled to an electric motor by performing at least the following: obtain a gate drive current modulation profile, supply, based on the gate drive current modulation profile, a first gate drive current level as the gate drive current when the output drive switch is operating within a first region, drop the first gate drive current level to a second gate drive current level when the output drive switch transitions from the first region to operating within a Miller region, increase the second gate drive current level to a third gate drive current level within the Miller region, and set the gate drive current to a fourth gate drive current level when the output drive switch transitions from the Miller region to operating within a third region.

    Switching rate monitoring and control

    公开(公告)号:US10594315B2

    公开(公告)日:2020-03-17

    申请号:US15651897

    申请日:2017-07-17

    Abstract: An apparatus to monitor and control a switching rate in a switch includes a differentiator circuit including a capacitor and a configurable resistor. The differentiator circuit further includes an input terminal of the capacitors configured to receive a first voltage from a switch and a differentiator node configured to receive a differentiated voltage based on the first voltage. The apparatus includes a peak detector circuit coupled to the differentiator node and configured to detect a peak value of the differentiated voltage. The apparatus further includes a driver circuit coupled to the peak detector circuit and configured to adjust a control signal to the switch responsive to the detected peak value of the differentiated voltage.

    Resonant line driver including energy transfer inductor for driving capacitive-load lines

    公开(公告)号:US10521041B2

    公开(公告)日:2019-12-31

    申请号:US14825942

    申请日:2015-08-13

    Abstract: A resonant line driver for driving capacitive-loads includes a driver series-coupled to an energy transfer inductor L1, driving signal energy at a signal frequency through L1. A switch array is controlled to switch L1 between multiple electrodes according to a switching sequence, each electrode characterized by a load capacitance CL. L1 and CL form a resonator circuit in which signal energy cycles between L1 and CL at the signal frequency. The switch array switches L1 between a current electrode and a next electrode at a zero_crossing when signal energy in the energy transfer inductor is at a maximum and signal energy in the load capacitance of the current electrode is at a minimum. An amplitude control loop controls signal energy delivered to the L1CL resonator circuit, and a frequency control loop controls signal frequency/phase. In an example application, the resonant driver provides line drive for a mutual capacitance touch screen.

    System for transmitting information between circuits

    公开(公告)号:US09667451B2

    公开(公告)日:2017-05-30

    申请号:US15195687

    申请日:2016-06-28

    Abstract: In described examples, a first isolation element electrically isolates a first circuit from a second circuit and passes AC signals between the first circuit and the second circuit. A second isolation element electrically isolates the first circuit from the second circuit and passes AC signals between the first circuit and the second circuit. A ground of the second circuit electrically floats relative to a ground of the first circuit, so that a digital signal is able to pass from the second circuit through a third isolation element to the first circuit. A supply voltage generation device converts AC signals from the first isolation element and the second isolation element into at least one DC voltage to power the second circuit.

    RECONFIGURABLE AMPLIFIER
    10.
    发明申请
    RECONFIGURABLE AMPLIFIER 有权
    可重放放大器

    公开(公告)号:US20160191006A1

    公开(公告)日:2016-06-30

    申请号:US14587863

    申请日:2014-12-31

    Abstract: An amplifier receives a differential signal and, in response, generates a first negative input current and a first positive input current. In a first operating mode, the amplifier receives a second differential signal, and, in response, generates a second negative input current and a second positive input current. In a second operating mode, the amplifier receives the second differential signal, and, in response, generates a third negative input current and a third positive input current. When the device is operating in the first operating mode, the first negative input current is summed with the second negative input current and the first positive input current is summed with the second positive input current. When the device is operating in the second operating mode, the first negative input current is summed with the third negative input current and the first positive input current is summed with the third positive input current.

    Abstract translation: 放大器接收差分信号,作为响应,产生第一负输入电流和第一正输入电流。 在第一操作模式中,放大器接收第二差分信号,并且作为响应,产生第二负输入电流和第二正输入电流。 在第二操作模式中,放大器接收第二差分信号,并且作为响应,产生第三负输入电流和第三正输入电流。 当器件在第一工作模式下工作时,第一个负输入电流与第二个负输入电流相加,第一个正输入电流与第二个正输入电流相加。 当器件在第二工作模式下工作时,第一个负输入电流与第三个负输入电流相加,第一个正输入电流与第三个正输入电流相加。

Patent Agency Ranking