Abstract:
A magnetoresistive device includes an MR element including a metal layer, and an insulating portion made of magnesium oxide and in contact with the MR element. A method of manufacturing the magnetoresistive device includes the step of removing an unwanted magnesium oxide film that is formed by the magnesium oxide in the process of forming the insulating portion. In this step, the unwanted magnesium oxide film is wet etched by using an etchant containing an aqueous ammonia solution.
Abstract:
This method of manufacturing a perpendicular magnetic recording head includes: forming a water-soluble resin film on a base; forming a first resist pattern having an opening on the water-soluble resin film; selectively dissolving the water-soluble resin film exposed at a bottom of the opening with a developer to expose a part of a surface of the base; forming a non-magnetic oxide film to cover the opening and the exposed part of the surface of the base; forming a second resist pattern to fill the opening covered with the non-magnetic oxide film and then removing the first resist pattern and the non-magnetic oxide film; forming a first side shield and a second side shield on the base to allow them to face each other with the second resist pattern therebetween; and forming a magnetic pole between the first and the second side shields after removal of the second resist pattern.
Abstract:
A method for manufacturing a pattern multilayer body that has a plurality of pattern layers, and where a pattern is formed in each pattern layer, includes a step of forming an overlay pattern within an overlay pattern formation region, and in the step of forming the overlay pattern, a photoresist film is formed, and after a photoresist film is exposed via a main mask, a resist pattern is formed by exposing a sub mask(s). The main mask has a pattern light-shielding part that is commonly used for forming a pattern in each pattern layer, and each main light-shielding part for forming each overlay patter; and a sub mask has an opening part that is exposable to an unexposed region(s) within an overlay pattern formation region other than an unexposed region(s) on the photoresist film, which has been light-shielded by the main light-shielding part for forming a corresponding overlay pattern. This enables forming an overlay pattern that is high in position gap measurement accuracy in a direction orthogonal to the lamination direction when manufacturing a pattern multilayer body.
Abstract:
Method for manufacturing a magnetic head includes providing a stopper layer on an upper surface of a main magnetic pole layer applying a magnetic flux to a recording medium via a first insulation layer, providing a second insulation layer on the upper surface of the first insulation layer to cover at least an entire surface of the stopper layer, covering an upper surface portion of the second insulation layer with a mask layer, forming a height difference portion by removing at least a first insulation layer portion not covered by the mask layer by etching to at least partially remove at least a stopper layer portion in a film thickness direction, and subsequently by removing the mask layer, forming a electrode film in the height difference portion, and forming a plating film, which is a magnetic shield for the main magnetic pole layer, on an upper surface of the electrode.