Abstract:
The present invention relates to a chemical deposition raw material for manufacturing an iridium thin film or an iridium compound thin film by a chemical deposition method, including an iridium complex in which cyclopropenyl or a derivative thereof and a carbonyl ligand are coordinated to iridium. The iridium complex that is applied in the present invention enables an iridium thin film to be manufactured even when a reducing gas such as hydrogen is applied. in which R1 to R3, which are substituents of the cyclopropenyl ligand, are each independently hydrogen, or a linear or branched alkyl group with a carbon number of 1 or more and 4 or less.
Abstract:
The present invention provides a method for producing a cyclometalated iridium complex by use of a non-chlorine iridium raw material. The method for producing a cyclometalated iridium complex includes producing a cyclometalated iridium complex by reacting a raw material including an iridium compound with an aromatic heterocyclic bidentate ligand capable of forming an iridium-carbon bond, the raw material being non-halogenated iridium having a conjugated base of a strong acid as a ligand. Here, the non-halogenated iridium is preferably one containing a conjugated base of a strong acid having a pKa of 3 or less as a ligand.
Abstract:
The present invention provides a method of extracting an asymmetric β-diketone compound from a β-diketone compound containing at least one symmetric β-diketone compound mixed in the asymmetric β-diketone compound, and the method includes the step (A) of adjusting a pH of a mixed solution of the β-diketone compound and water at 11.5 or more and dissolving the β-diketone compound into water to form a β-diketone compound solution and the step (B) of subsequently adjusting the pH of the β-diketone compound solution at 9.5 or less and recovering the asymmetric β-diketone compound of Chemical Formula 1 separated from the β-diketone compound solution. The present invention further includes at least either (a) a step of setting the upper limit of the pH of the mixed solution to 12.5 to form a β-diketone compound solution in the step (A) and bringing the β-diketone compound solution into contact with a hydrophobic solvent or (b) a step of setting the lower limit of the pH of the β-diketone compound solution to 8.0 in the step (B).
Abstract:
A raw material for vapor deposition for producing a platinum thin film or a platinum compound thin film by a vapor deposition method. The raw material for vapor deposition includes an organoplatinum compound represented by the following formula, in which a cyclopentene-amine ligand and an alkyl ligand are coordinated to divalent platinum. The organoplatinum compound of the present invention has moderate thermal stability and can respond flexibly to severe film formation conditions, including a wider film formation area, higher throughput, and the like. (In the formula, R1, R2, and R3 are each any one of a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an amino group, an imino group, a cyano group, and an isocyano group, each having 4 or less carbon atoms, and R4 and R5 are each an alkyl group having 1 or more and 3 or less carbon atoms.)
Abstract:
The present invention relates to a chemical vapor deposition raw material for producing a ruthenium thin film or a ruthenium compound thin film by a chemical deposition method, the chemical vapor deposition raw material including a dinuclear ruthenium complex in which carbonyl and a nitrogen-containing organic ligand (L) are coordinated to metallically bonded two rutheniums, the dinuclear ruthenium complex being represented by the following formula (1): A raw material according to the present invention is capable of producing a high-purity ruthenium thin film, and has a low melting point and moderate thermal stability. Thus, the raw material according to the present invention is suitable for use in electrodes of various kinds of devices.
Abstract:
The present invention relates to a chemical deposition raw material including a heterogeneous polynuclear complex in which a cyclopentadienyl and a carbonyl are coordinated to a first transition metal and a second transition metal as central metals, the chemical deposition raw material being represented by the following formula. In the following formula, the first transition metal (M1) and the second transition metal (M2) are mutually different. The number of cyclopentadienyls (L) is 1 or more and 2 or less, and to the cyclopentadienyl is coordinated one of a hydrogen atom and an alkyl group with a carbon number of 1 or more and 5 or less as each of substituents R1 to R5. With the chemical deposition raw material of the present invention, a composite metal thin film or a composite metal compound thin film containing plural metals can be formed from a single raw material.
Abstract:
A heterogeneous polynuclear complex for use as a raw material in the chemical deposition of composite metal or composite metal thin films with the below formula. In the formula, M1 and M2 are mutually different transition metals, x is an integer of 0 or more and 2 or less, y is in integer of 1 or more and 2 or less, z is an integer of 1 or more and 10 or less, R1 to R4 are each one of a hydrogen atom and an alkyl group with a carbon number of 1 or more and 5 or less, and R5 is a hydrogen atom, a carbonyl, an alkyl group with a carbon number of 1 or more and 7 or less, an allyl group or an allyl derivative. The heterogeneous polynuclear complex allows a composite metal thin film or a composite metal compound thin film containing a plurality of metals to be formed from a single raw material.
Abstract:
The present invention relates to a raw material for a cyclometalated iridium complex, and provides a technique that makes it possible to obtain a cyclometalated iridium complex in higher yield at a lower reaction temperature than using tris(2,4-pentanedionato)iridium(III). The present invention relates to a raw material for a cyclometalated iridium complex, including an organic iridium material for producing a cyclometalated iridium complex, the organic iridium material being a tris(β-diketonato)iridium(III), in which an asymmetric β-diketone is coordinated to iridium.
Abstract:
The present invention is a method for recycling an organic ruthenium compound for chemical vapor deposition, wherein an unreacted organic ruthenium compound is extracted from a used raw material through a thin film formation process. The method includes the following steps (a) to (c). (a) A modification step in which the used raw material and a hydrogenation catalyst are brought into contact with each other in a hydrogen atmosphere, thereby hydrogenating an oxidized organic ruthenium compound in the used raw material. (b) An adsorption step in which the used raw material and an adsorbent are brought into contact with each other, thereby removing impurities in the used raw material. (c) A restoration step in which the used raw material is heated at a temperature that is not lower than −100° C. and not higher than −10° C. with respect to the decomposition temperature of the organic ruthenium compound for eight hours or more, thereby adjusting the ratio of the isomers of the organic ruthenium compound in the used raw material.
Abstract:
The present invention relates to a raw material for chemical deposition for producing a ruthenium thin film or a ruthenium compound thin film by a chemical deposition method, containing a ruthenium complex represented by the following Chemical Formula 1. In Chemical Formula 1, ligands L1 and L2 coordinated to ruthenium are represented by the following Chemical Formula 2. The raw material for chemical deposition according to the present invention can be formed into a high quality thin film even if a reaction gas containing an oxygen atom is not used. wherein R1 to R12, which are substituents of the ligands L1 and L2, are each independently any one of a hydrogen atom, and a linear or branched alkyl group having a carbon number of 1 or more and 4 or less.