摘要:
A high electron mobility transistor (HEMT) includes a substrate; and a first semiconductor layer over the substrate. The HEMT further includes a second semiconductor layer over the first semiconductor layer, wherein the second semiconductor layer has a band gap discontinuity with the first semiconductor layer, and at least one of the first semiconductor layer or the second semiconductor layer comprises indium. The HEMT further includes a top layer over the second semiconductor layer. The HEMT further includes a gate electrode over the top layer. The HEMT further includes a source and a drain on opposite sides of the gate electrode, wherein the top layer extends continuously from below the source, below the gate electrode, and to below the drain.
摘要:
A semiconductor structure including a substrate and a nucleation layer over the substrate. The semiconductor structure further includes a first III-V layer over the nucleation layer, wherein the first III-V layer includes a first dopant type. The semiconductor structure further includes one or more sets of III-V layers over the first III-V layer. Each set of the one or more sets of III-V layers includes a lower III-V layer, wherein the lower III-V layer has a second dopant type opposite the first dopant type, and an upper III-V layer on the lower III-V layer, wherein the upper III-V layer has the first dopant type. The semiconductor structure further includes a second III-V layer over the one or more sets of III-V layers, the second III-V layer having the second dopant type.
摘要:
A semiconductor device includes an indium gallium nitride layer over an active layer. The semiconductor device further includes an annealed region beneath the indium gallium nitride layer, the annealed region comprising indium atoms driven from the indium gallium nitride layer into the active layer.
摘要:
A transistor includes a substrate, a channel layer over the substrate, an active structure over the channel layer, a gate electrode over the channel layer, and a drain electrode over the channel layer. The active structure is configured to cause a two dimensional electron gas (2DEG) to be formed in the channel layer along an interface between the channel layer and the active structure. The gate electrode and the drain electrode define a first space therebetween. The substrate has a first portion directly under the first space defined between the gate electrode and the drain electrode, and the first portion has a first electrical conductivity value less than that of intrinsic silicon and a thermal conductivity value greater than that of intrinsic silicon.
摘要:
Some implementations described herein provide a temporary carrier structure and techniques to form a semiconductor device on the temporary carrier structure. The temporary carrier structure includes a core layer formed from a material having a first bandgap lattice constant. The temporary carrier structure further includes a debonding layer formed from another material having a second bandgap energy constant that is lesser relative to the first bandgap lattice constant. Techniques to form the semiconductor device including a forming substrate layer of the semiconductor device on the temporary carrier structure, where a material of the substrate layer and the material of the core layer have a same approximate coefficient of thermal expansion. The techniques further include providing energy (e.g., electromagnetic waves from a laser source) to the debonding layer to remove the core layer from the temporary carrier structure.
摘要:
A transistor includes a substrate and a buffer layer on the substrate, wherein the buffer layer comprises p-type dopants. The transistor further includes a channel layer on the buffer layer and a back-barrier layer between a first portion of the channel layer and a second portion of the channel layer. The back-barrier layer has a band gap discontinuity with the channel layer. The transistor further includes an active layer on the second portion of the channel layer, wherein the active layer has a band gap discontinuity with the second portion of the channel layer. The transistor further includes a two dimensional electron gas (2-DEG) in the channel layer adjacent an interface between the channel layer and the active layer.
摘要:
Depositing gallium nitride and carbon (GaN:C) (e.g., in the form of composite layers) when forming a gallium nitride drain of a transistor provides a buffer between the gallium nitride of the drain and silicon of a substrate in which the drain is formed. As a result, gaps and other defects caused by lattice mismatch are reduced, which improves electrical performance of the drain. Additionally, current leakage into the substrate is reduced, which further improves electrical performance of the drain. Additionally, or alternatively, implanting silicon in an aluminum nitride (AlN) liner for a gallium nitride drain reduces contact resistance at an interface between the gallium nitride and the silicon. As a result, electrical performance of the transistor is improved.
摘要:
A high electron mobility transistor includes: a first semiconductor layer over a substrate, and a second semiconductor layer over the first semiconductor layer, the second semiconductor layer having a band gap discontinuity with the first semiconductor layer, and at the first semiconductor layer and/or the second conductive layer includes indium. A top layer is over the second semiconductor layer, and a metal layer is over, and extends into, the top layer, the top layer separating the metal layer from the second semiconductor layer. A gate electrode is over the top layer, a third semiconductor layer being between the gate electrode and the top layer, where a sidewall of the third semiconductor layer and a sidewall of the metal layer are separated. A source and drain are on opposite sides of the gate electrode, the top layer extending continuously from below the source, below the gate electrode, and below the drain.
摘要:
A semiconductor device includes a substrate, a first layer over the substrate, a second layer over the first layer, and a third layer over the second layer. The third layer has a first portion and a second portion. The first portion of the third layer is separated from the second portion of the third layer. The semiconductor device also includes a first blended region beneath the first portion of the third layer. The first blended region includes aluminum atoms drawn from the first layer into at least the second layer. The semiconductor device further includes a second blended region beneath the second portion of the third layer. The second blended region includes aluminum atoms drawn from the first layer into at least the second layer. The semiconductor device also includes a source contact and a drain contact.
摘要:
A semiconductor device includes a doped substrate and a seed layer in direct contact with the substrate. The seed layer includes a first seed sublayer having a first lattice structure. The first seed layer is doped with carbon. The seed layer further includes a second seed sublayer over the first see layer, wherein the second seed layer has a second lattice structure. The semiconductor device further includes a graded layer in direct contact with the seed layer. The graded layer includes a first graded sublayer including AlGaN having a first Al:Ga ratio; a second graded sublayer including AlGaN having a second Al:Ga ratio different from the first Al:Ga ratio; and a third graded sublayer over including AlGaN having a third Al:Ga ratio different from the second Al:Ga ratio. The semiconductor device includes a channel layer over the graded layer. The semiconductor device includes an active layer over the channel layer.