Abstract:
An apparatus and process for hydrogen peroxide vapor sterilization of medical instruments and similar devices make use of hydrogen peroxide vapor released from a substantially non-aqueous organic hydrogen peroxide complex, such as a urea-peroxide complex. Optionally, a plasma can be used in conjunction with the vapor. A method for preparing substantially non-aqueous hydrogen peroxide complexes is also provided. These complexes are useful as a source of peroxide vapor in hydrogen peroxide vapor sterilizers and as a component of self-sterilizing packaging materials.
Abstract:
An apparatus and process for hydrogen peroxide vapor sterilization of medical instruments and similar devices make use of hydrogen peroxide vapor released from a substantially non-aqueous organic hydrogen peroxide complex, such as a urea-peroxide complex. Optionally, a plasma can be used in conjunction with the vapor. A method for preparing substantially non-aqueous hydrogen peroxide complexes is also provided. These complexes are useful as a source of peroxide vapor in hydrogen peroxide vapor sterilizers and as a component of self-sterilizing packaging materials.
Abstract:
An apparatus and process for hydrogen peroxide vapor sterilization of medical instruments and similar devices make use of hydrogen peroxide vapor released from a substantially non-aqueous organic hydrogen peroxide complex, such as a urea-peroxide complex. Optionally, a plasma can be used in conjunction with the vapor. A method for preparing substantially non-aqueous hydrogen peroxide complexes is also provided. These complexes are useful as a source of peroxide vapor in hydrogen peroxide vapor sterilizers and as a component of self-sterilizing packaging materials.
Abstract:
A sterilized article is within the interior of a diffusion-restricted container. The container substantially prevents entry of microorganisms into the interior thereof. The container has at least one entry/exit port which permits entry/exit of gas and/or vapor into/out of the interior, but prevents entry of microorganisms into the interior.
Abstract:
An improved apparatus and method for measuring the concentration of hydrogen peroxide vapor or gas in a sterilization chamber. The hydrogen peroxide is measured spectrophotometrically in the ultraviolet region between 200 and 400 nm. Because water vapor does not absorb in the ultraviolet region, it does not interfere with the determination of the concentration of the hydrogen peroxide vapor. Although organic compounds have absorbances in the ultraviolet region, the organic compounds are removed by evacuating the sterilization chamber to low levels before doing the hydrogen peroxide determination. The ultraviolet light source is either a low pressure mercury vapor lamp with an emission at 254 nm or a deuterium lamp with an optical filter selective of 206 nm light. A movable gas cell can be used to measure the hydrogen peroxide concentration at various areas in the sterilization chamber. The measurement system can be combined with a feedback loop to control the concentration of hydrogen peroxide in the sterilization chamber.
Abstract:
A method for cleaning and sterilizing a medical device comprises the steps of: a) placing the device into a container, b) cleaning the device with a cleaning solution, c) rinsing the device with rinse solution, d) treating the device with a liquid sterilant, e) vaporizing the liquid sterilant in the container thereby simultaneously sterilizing and drying the device, and providing a sterile, dry product without further rinsing. The method further comprises retaining a predetermined amount of the liquid sterilant in the container prior to step e). Step e) can be conducted under a diffusion restricted environment, or by reducing pressure to a first predetermined pressure followed by further reducing the first pressure to a predetermined second pressure, or at controlled pump down rate.
Abstract:
A method for hydrogen peroxide vapor sterilization of medical devices and similar instruments having long narrow lumens or diffusion restricted areas includes the step of pretreating the article to be sterilized with a dilute solution of hydrogen peroxide prior to exposure to a vacuum or a vacuum followed by plasma. The method is such that, upon vaporization of the solution caused by the vacuum, the hydrogen peroxide remains in contact with the article for a time sufficient to achieve sterilization.
Abstract:
A method for hydrogen peroxide vapor sterilization of medical devices and similar instruments having long narrow lumens or diffusion restricted areas includes the step of pretreating the article to be sterilized with a dilute solution of hydrogen peroxide prior to exposure to a vacuum or a vacuum followed by plasma. The method is such that, upon vaporization of the solution caused by the vacuum, the hydrogen peroxide remains in contact with the article for a time sufficient to achieve sterilization.
Abstract:
A system to deliver gas/vapor from solid materials. Specifically, the delivery system for the use of gas or vapor released from a solid material, such as a non-aqueous/solid hydrogen peroxide complex. The system is comprised of a delivery system that is configured to receive a plurality of disks containing the solid material and provide these disks into an injector. The injector heats the disks to produce a gas or vapor that is then provided into a chamber. The sterilization process can be done by gas or vapor alone, or in combination with plasma or ultra violet radiation. In particular, a control system automatically induces the delivery system to provide the injector with a disk and then remove the disk once the injection sequence is complete.
Abstract:
A method and an apparatus for sterilizing a lumen device. A lumen and a container having an interface on a wall of the container are enclosed in a chamber. The lumen is placed across the interface so that one end of the lumen is in the container and the other end is in the chamber. Germicide is introduced into the chamber, and a pressure difference is created between the two ends of the lumen, so that the germicide flows through the lumen. The lumen may alternatively be placed across an interface which separates the chamber into two areas. Germicide is introduced into the chamber, and a pressure difference is created between the two areas of the chamber, causing the germicide to flow through the lumen.