摘要:
A multi-layer, fiber-reinforced composite orthopaedic fixation device having a design selected based on a desired characteristic of the orthopaedic fixation device. The design may be selected according to a model of the device, the model defining design constraints, and the design may comprise a pattern of the fiber angle for each layer. The selection of a design may be analyzed using finite element analysis to determine whether the design will comprise the desired characteristic.
摘要:
A multi-layer, fiber-reinforced composite orthopaedic fixation device having a design selected based on a desired characteristic of the orthopaedic fixation device. The design may be selected according to a model of the device, the model defining design constraints, and the design may comprise a pattern of the fiber angle for each layer. The selection of a design may be analyzed using finite element analysis to determine whether the design will comprise the desired characteristic.
摘要:
An intramedullary (“IM”) nail for internal fixation of a bone is disclosed. In one embodiment, the IM nail may be a retrograde femoral nail. Alternatively, in another embodiment, the IM nail may be a tibial IM nail. In one or more embodiments, the screw holes are arranged and configured to optimize placement of one or more screws, fasteners, or the like. In addition, and/or alternatively, an IM nail may be arranged and configured to facilitate removal of a broken screw. Alternatively, in some embodiments, the tibial IM nail may be arranged and configured to be side-specific so that the anatomic specific tibial IM nails can be used to, for example, target specific bony anatomy such as, for example, the patient's posterior malleolar, the syndesmotic joint, etc.
摘要:
A tissue protection sleeve for use in trauma surgery is disclosed. In various embodiments, the tissue protection sleeve includes an inner sleeve with a first end portion, a second end portion, a longitudinal axis, and a bore extending there through, and an outer sleeve at least partially surrounding and coupled to the inner sleeve, wherein the tissue protection sleeve is capable of flexing or bending without collapsing the bore. In some embodiments, the inner sleeve may include a number of distinct geometries to provide sufficient structural rigidity, whilst still allowing the inner sleeve to bend. Additionally, a tissue protection sleeve handle may be coupled to the tissue protection sleeve to allow for manipulation of the tissue protection sleeve. In certain embodiments, pin guide holes or channels may be used to secure the tissue protection sleeve to a patient's bone.
摘要:
An intramedullary (“IM”) nail for internal fixation of a bone is disclosed. In one embodiment, the IM nail may be a retrograde femoral nail. Alternatively, in another embodiment, the IM nail may be a tibial IM nail. In one or more embodiments, the screw holes are arranged and configured to optimize placement of one or more screws, fasteners, or the like. In addition, and/or alternatively, an IM nail may be arranged and configured to facilitate removal of a broken screw.
摘要:
A multi-layer, fiber-reinforced composite orthopedic fixation device having a design selected based on a desired characteristic of the orthopedic fixation device. The design may be selected according to a model of the device, the model defining design constraints, and the design may comprise a pattern of the fiber angle for each layer. The selection of a design may be analyzed using finite element analysis to determine whether the design will comprise the desired characteristic.
摘要:
A multi-layer, fiber-reinforced composite orthopaedic fixation device having a design selected based on a desired characteristic of the orthopaedic fixation device. The design may be selected according to a model of the device, the model defining design constraints, and the design may comprise a pattern of the fiber angle for each layer. The selection of a design may be analyzed using finite element analysis to determine whether the design will comprise the desired characteristic.
摘要:
Disclosed herein is a self-countersinking bone screw and a system and a method for countersinking a bone screw or fastener used in connection with an orthopedic implant such as, for example, an intramedullary nail. The bone screw includes one or more cutting features configured to self-countersink the head of the screw. The system and method utilize instrumentation including a plurality of markings or indicia configured to indicate a position of the head of the screw relative to an outer surface of the patient's bone. In use, the method enables a surgeon to quickly and easily countersink one or more bone screws used to couple an IM nail to a patient's bone without requiring additional instrumentation to form a countersunk hole in the patient's bone.