Abstract:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, an active layer, and a second semiconductor layer. The first layer has a first upper surface and a first side surface. The active layer has a first portion covering the first upper surface and having a second upper surface, and a second portion covering the first side surface and having a second side surface. The second layer has a third portion covering the second upper surface, and a fourth portion covering the second side surface. The first and second layers include a nitride semiconductor. The first portion along a stacking direction has a thickness thicker than the second portion along a direction from the first side surface toward the second side surface. The third portion along the stacking direction has a thickness thicker than the fourth portion along the direction.
Abstract:
A light emitter according to one embodiment has a fiber shape. And it includes a core portion containing a light emitting material, the material absorbing excitation light and emitting light having a wavelength longer than a wavelength of the excitation light. And also it includes a clad portion provided outside the core portion, the clad portion having a first region and second regions, the second regions being periodically formed in the first region, the second regions having a refractive index higher than a refractive index of a first region, the refractive index of the first region being equal to or higher than a refractive index of the core portion.
Abstract:
Embodiments describe a semiconductor laser device driven at low voltage and which is excellent for cleavage and a method of manufacturing the device. In one embodiment, the semiconductor laser device includes a GaN substrate; a semiconductor layer formed on the GaN substrate; a ridge formed in the semiconductor layer; a recess formed in the bottom surface of the GaN substrate. The recess has a depth less than the thickness of the GaN substrate. The device also has a notch deeper than the recess formed on a side surface of the GaN substrate and separated from the recess. In the semiconductor laser device, the total thickness of the GaN substrate and the semiconductor layer is 100 μm or more, and the distance between the top surface of the ridge and the bottom surface of the recess is 5 μm or more and 50 μm or less.
Abstract:
According to the embodiments, an easy-to-fabricate light-emitting apparatus is provided in which a plurality of phosphors is disposed so as not to overlap each other. The light-emitting apparatus includes a light source that emits excitation light; a substrate having a protrusion and recess configuration where first planes and second planes which intersect the first planes are formed periodically; first phosphor layers formed on the first planes and absorbing the excitation light to emit a first fluorescence; and second phosphor layers formed on the second planes and absorbing the excitation light to emit a second fluorescence with a wavelength different from that of the first fluorescence.
Abstract:
A semiconductor light emitting device of one embodiment includes: a substrate; an n-type layer of an n-type nitride semiconductor on the substrate; an active layer of a nitride semiconductor on the n-type semiconductor layer; a p-type layer of a p-type nitride semiconductor on the active layer. The p-type layer has a ridge stripe shape. The device has an end-face layer of a nitride semiconductor formed on an end face of the n-type semiconductor layer, the active layer, and the p-type semiconductor layer. The end face is perpendicular to an extension direction of the ridge stripe shape. The end-face layer has band gap wider than the active layer. The end-face layer has Mg concentration in the range of 5E16 atoms/cm3 to 5E17 atoms/cm3 at a region adjacent to the p-type layer.
Abstract:
A semiconductor device includes a p-type nitride semiconductor layer (14); and a p-side electrode (18) including a palladium oxide film (30) connected to a surface of the nitride semiconductor layer (14).
Abstract:
A liquid crystal display device of an embodiment has: a semiconductor laser diode emitting a first laser beam; a first reflecting unit configured to reflect the first laser beam and form a second laser beam having a one-dimensionally spread distribution; and a second reflecting unit configured to reflect the second laser beam and form a third laser beam having a two-dimensionally spread distribution. The device also has: an optical switch using liquid crystal, the optical switch being configured to control passage and blocking of the third laser beam; and a first scattering unit scattering the third laser beam.
Abstract:
A semiconductor light-emitting element has a laminated section which has an active layer made of a semiconductor, and first and second clad layers each being disposed to sandwich the active layer and made of a semiconductor, a pair of first high-reflection layers each being disposed to sandwich the active layer in a first direction orthogonal to the laminated direction of the laminated section, and a low-reflection layer and a second high-reflection layer each being disposed to sandwich the active layer in a second direction orthogonal to the laminated direction and crossing to the first direction.
Abstract:
A semiconductor device of an embodiment includes: a semiconductor layer made of p-type nitride semiconductor; an oxide layer formed on the semiconductor layer, the oxide layer being made of a polycrystalline nickel oxide, and the oxide layer having a thickness of 3 nm or less; and a metal layer formed on the oxide layer.
Abstract:
A semiconductor light emitting element includes a first clad layer of a first conductivity type provided on a substrate; an active layer provided on the first clad layer; a second clad layer of a second conductivity type provided on the active layer, an upper portion of the second clad layer implements a ridge extending in a predetermined direction; a pair of first current block layers provided on the second clad layer sandwiching the ridge along the extending direction; and a pair of second current block layers provided between the first current block layers on the second clad layer and at sidewalls of the ridge to be contacted with the first current block layers, sandwiching selectively a region including an edge of the ridge, the second current block layers having a refractive index larger than the first current block layers at an emission peak wavelength of the active layer.