Abstract:
A sputtering target for a magnetic recording film containing SiO2, wherein a peak strength ratio of a (011) plane of quartz relative to a background strength (i.e. quartz peak strength/background strength) in an X-ray diffraction is 1.40 or more. An object of this invention is to obtain a sputtering target for a magnetic recording film capable of inhibiting the formation of cristobalites in the target which cause the generation of particles during sputtering, shortening the burn-in time, magnetically and finely separating the single-domain particles after deposition, and improving the recording density.
Abstract:
Provided is a sputtering target containing SiO2 for a magnetic recording film, wherein a ratio of the peak intensity of cristobalites, which are crystallized SiO2, to the background intensity (cristobalite peak intensity/background intensity) in an X-ray diffraction is 1.40 or less. The present invention aims to obtain a sputtering target for a magnetic recording film capable of inhibiting the formation of cristobalites in the target which cause the generation of particles during sputtering, and shortening the burn-in time.
Abstract:
A sputtering target for a magnetic recording film containing SiO2, wherein a peak strength ratio of a (011) plane of quartz relative to a background strength (i.e. quartz peak strength/background strength) in an X-ray diffraction is 1.40 or more. An object of this invention is to obtain a sputtering target for a magnetic recording film capable of inhibiting the formation of cristobalites in the target which cause the generation of particles during sputtering, shortening the burn-in time, magnetically and finely separating the single-domain particles after deposition, and improving the recording density.
Abstract:
Provided is a sputtering target for a magnetic recording film containing SiO2, wherein the sputtering target for a magnetic recording film contains B (boron) in an amount of 10 to 1000 wtppm. An object of this invention is to obtain a sputtering target for a magnetic recording film capable of inhibiting the formation of cristobalites in the target which cause the generation of particles during sputtering, shortening the burn-in time, and realizing a stable discharge with a magnetron sputtering device.
Abstract:
Provided is a sputtering target containing SiO2 for a magnetic recording film, wherein a ratio of the peak intensity of cristobalites, which are crystallized SiO2, to the background intensity (cristobalite peak intensity/background intensity) in an X-ray diffraction is 1.40 or less. The present invention aims to obtain a sputtering target for a magnetic recording film capable of inhibiting the formation of cristobalites in the target which cause the generation of particles during sputtering, and shortening the burn-in time.
Abstract:
A quaternary alloy sputtering target composed of copper (Cu), indium (In), gallium (Ga) and selenium (Se), wherein a composition ratio of the respective elements is represented by a formula of CuxIn1-yGaySea (in the formula, 0.84≦x≦0.98, 0
Abstract:
A quaternary alloy sputtering target made of copper (Cu), indium (In), gallium (Ga) and selenium (Se), wherein the Cu—In—Ga—Se sputtering target has a composition that is represented by a composition formula of CuIn1−xGaxSe2−y (provided that x and y respectively represent atomic ratios), a composition range of 0
Abstract:
A sputtering target is provided that has a relative density of 80% or more and contains a compound having as its principal component zinc oxide satisfying AXBYO(KaX+KbY)/2(ZnO)m, 1
Abstract:
A Ge—Cr alloy sputtering target containing 5 to 50 at % of Cr and having a relative density of 95% or more, and a manufacturing method of such a Ge—Cr alloy sputtering target wherein Cr powder having a minus sieve of 75 μm or less, and Ge powder having a minus sieve of 250 μm or less and having a BET specific surface area of 0.4 m2/g or less are dispersively mixed in an even manner, and sintered thereafter. Thereby provided is a Ge—Cr alloy sputtering target capable of suppressing variation of the deposition speed and film composition, as well as improving the production yield, of the GeCrN layer deposited with reactive sputtering as the intermediate layer between the recording layer and protective layer of a phase change optical disk, and the manufacturing method of such a target.
Abstract:
The present invention provides a sputtering target for a phase change memory and a phase change memory film formed with such a target, and the manufacturing method thereof, characterized in that the sputtering target is composed from elements of not less than a three component system and has as its principal component one or more components selected from stibium, tellurium and selenium, and the compositional deviation in relation to the intended composition is ±1.0 at % or less. This sputtering target for a phase change memory is capable of reducing, as much as possible, impurities that cause the reduction in the number of times rewriting can be conducted as a result of such impurities segregating and condensing in the vicinity of the boundary face of the memory point and non-memory point; in particular, impurity elements that affect the crystallization speed, reducing the compositional deviation of the target in relation to the intended composition, and improving the rewriting properties and crystallization speed of a phase change memory by suppressing the compositional segregation of the target.