Abstract:
A contaminant cleaning device includes a stage configured to house a substrate; an imaging means configured to obtain an image of a contaminant on the substrate; a control means configured to recognize the image and configured to generate a control signal in accordance with the recognized image; a UV generating means; an irradiation shape forming unit configured to selectively block a passage of UV radiated from the UV generating means to make a UV irradiated shape correspond to a shape of the image recognized in the control means; and an interrupter configured to receive a control signal from the control means to block or allow passage of UV from the UV generating means, wherein the stage is configured to move in accordance with a control signal from the control means to enable a contaminant on the substrate to be positioned in the area to which UV is irradiated.
Abstract:
A method of manufacturing an organic light-emitting display device, which simplifies fabrication processes of the organic light-emitting display device and improves manufacturing yield. This method includes preparing a substrate that has a number of first regions and a second region surrounding the first regions. The substrate is conveyed into a chamber. An organic emission layer is formed in a direction on a surface of the substrate. A first metal layer is formed on the organic emission layer so as to correspond to the first regions, and the organic emission layer formed on the second region is removed.
Abstract:
An organic light-emitting apparatus includes a substrate; a first electrode formed on the substrate, where the first electrode is a cathode, an electron injection layer formed to contact an upper surface of the first electrode and including Mg, an intermediate layer formed on the electron injection layer and including an organic emission layer, and a second electrode which is formed on the intermediate layer and is an anode.
Abstract:
An organic light-emitting apparatus includes a substrate; a first electrode formed on the substrate, where the first electrode is a cathode, an electron injection layer formed to contact an upper surface of the first electrode and including Mg, an intermediate layer formed on the electron injection layer and including an organic emission layer, and a second electrode which is formed on the intermediate layer and is an anode.
Abstract:
An organic light-emitting device includes a substrate; a first electrode layer and a second electrode layer on the substrate, in parallel to the substrate, and facing each other; an emission layer between the first electrode layer and the second electrode layer, where the emission layer includes a first emission region, a second emission region, and a third emission region, where the emission layer includes a first common emission layer in the first emission region, the second emission region, and the third emission region; a second emission layer in the second emission region between the first common emission layer and the second electrode layer; and a third emission layer in the third emission region between the first common emission layer and the second electrode layer, and where the first common emission layer includes a first host, a first dopant, and a p-type dopant.
Abstract:
A first conductive member is positioned on a base substrate. A second conductive member is positioned on the first conductive member, the second conductive member being electrically coupled to the first conductive member, and having a resistivity higher than that of the first conductive member. A mask substrate is positioned on the second conductive member. A portion of the mask substrate that contacts the second conductive member is removed .
Abstract:
A low temperature deposition device according to the present invention includes: a thermal deposition source unit spraying a deposition beam; a differential pumping unit connected to the thermal deposition source unit and passing the deposition beam; and a cooling gas inlet connected to the differential pumping unit and inserting a cooling gas inside the differential pumping unit to cool the deposition beam. According to the present invention, the inorganic deposition beam of low temperature is deposited on the substrate to form the inorganic metal layer of low temperature so that the damage to the organic layer may be minimized when forming the inorganic metal layer of low temperature on the organic layer.
Abstract:
A pyrene-based compound, an organic light-emitting diode including the compound and an organic light-emitting apparatus including the compound are disclosed.
Abstract:
An organic light-emitting device includes a substrate; a first electrode layer and a second electrode layer on the substrate, in parallel to the substrate, and facing each other; an emission layer between the first electrode layer and the second electrode layer, where the emission layer includes a first emission region, a second emission region, and a third emission region, where the emission layer includes a first common emission layer in the first emission region, the second emission region, and the third emission region; a second emission layer in the second emission region between the first common emission layer and the second electrode layer; and a third emission layer in the third emission region between the first common emission layer and the second electrode layer, and where the first common emission layer includes a first host, a first dopant, and a p-type dopant.
Abstract:
A low temperature deposition device according to the present invention includes: a thermal deposition source unit spraying a deposition beam; a differential pumping unit connected to the thermal deposition source unit and passing the deposition beam; and a cooling gas inlet connected to the differential pumping unit and inserting a cooling gas inside the differential pumping unit to cool the deposition beam. According to the present invention, the inorganic deposition beam of low temperature is deposited on the substrate to form the inorganic metal layer of low temperature so that the damage to the organic layer maybe minimized when forming the inorganic metal layer of low temperature on the organic layer.