Abstract:
A shadow mask for a cathode ray tube includes an aperture area having a plurality of apertures passing electron beams, a non-aperture area extending a predetermined distance from a circumference of the aperture area and a skirt extending a predetermined distance from an outside circumference of the non-aperture area and bent at a predetermined angle to the non-aperture area, wherein the aperture area has predetermined curvature radii, and wherein if a curvature radius in a horizontal direction of the aperture area is Rhs, and a curvature radius in a vertical direction is Rvs, the following condition is satisfied, 0.6
Abstract:
A method for crystallizing a silicon substrate includes manufacturing a crystallized silicon test substrate that is crystallized by scanning excimer laser annealing beams with different energy densities on respective areas of an amorphous silicon test substrate, irradiating a surface of the crystallized silicon test substrate using a light source, and measuring reflectivity corresponding to the respective areas of the crystallized silicon test substrate in a visible light wavelength range, extracting average reflectivities of the respective areas of the crystallized silicon test substrate in wavelength ranges corresponding to respective colors, calculating an optimum energy density (OPED) index per energy density by using a value acquired by subtracting average reflectivity of red-based colors from average reflectivity of blue-based colors, selecting an optimal energy density, and crystallizing an amorphous silicon substrate using the optimal energy density.
Abstract:
A plasma display panel (PDP) and a method of manufacturing the same with improved luminous efficiency. The PDP includes: a first substrate; a second substrate facing the first substrate; a plurality of sustain electrode pairs between the first substrate and the second substrate and extending in a first direction; a plurality of address electrodes on the second substrate and extending in a second direction crossing the first direction; a first dielectric layer on the second substrate for covering the address electrodes; a discharge enhancement layer on the first dielectric layer; a plurality of barrier ribs on the discharge enhancement layer and defining discharge cells between the first and second substrates; and phosphor layers in the discharge cells, wherein the discharge enhancement layer has an opening in each of the discharge cells, and wherein the barrier ribs have a roughness less than that of the discharge enhancement layer.
Abstract:
A plasma display panel is disclosed. The plasma display panel has discharge cells which each have a range of widths between the first substrate and the second substrate. In addition, the discharge spaces are separated by non-discharge spaces having heights which are less than the heights of the discharge spaces.
Abstract:
A light emission device includes: first and second substrates facing each other and spaced apart from each other; an electron emission region on an inner surface of the first substrate; a driving electrode on the inner surface of the first substrate to control an electron emission of the electron emission region; a phosphor layer on an inner surface of the second substrate; and a heat generation member on the inner surface of the second substrate or an outer surface of the second substrate to increase a temperature of the second substrate.
Abstract:
An electron emission device includes a substrate, a cathode electrode located on the substrate and having a first opening, the cathode electrode including a material that substantially blocks ultraviolet rays, an electron emission region that is located in the first opening and adapted to emit electrons, a gate electrode that is electrically insulated from the cathode electrode, the gate electrode including a material that substantially blocks ultraviolet rays, and a plurality of insulation layers located between the cathode and gate electrodes. The plurality of insulation layers includes first and second insulation layers adjacent to each other. The first insulation layer has a first etching rate that is different from a second etching rate of the second insulation layer.
Abstract:
An electron emission device and a display device having the electron emission device are provided. The electron emission device includes a plurality of driving electrodes located on a substrate and a plurality of electron emission regions electrically coupled to the driving electrodes. Each of the driving electrodes includes a first metal layer, a second metal layer, and a third metal layer. Here, the following condition is satisfied: T3/T1≧1.0, where T1 is a thickness of the first metal layer and T3 is a thickness of the third metal layer.
Abstract:
An electron emission display includes a first substrate and a second substrate facing each other, a side member formed along the edges of the first substrate and the second substrate to form a vacuum envelope together with the first substrate and the second substrate, an electron emission unit provided on the first substrate, a light emission unit provided on the second substrate to emit visible light when impacted by electrons from the electron emission unit, and a thermal conduction member connecting the first substrate and the second substrate.
Abstract:
An electron emission display device is constructed with first and second substrates facing each other, cathode electrodes formed on the first substrate, electron emission regions electrically connected to the cathode electrodes, and red, green and blue phosphor layers formed on a surface of the second substrate facing the first substrate. Each cathode electrode is constructed with a first electrode having opened portions arranged at the corresponding unit pixels defined on the first substrate with the same size, a second electrode spaced apart from the first electrode within the opened portion, and a resistance layer disposed between the first and the second electrodes to electrically interconnect the first and the second electrodes. The distance between the first and the second electrodes corresponding to the red, green and blue phosphor layers is established to be proportional to the light emission efficiency of the corresponding red, green and blue phosphor layers.
Abstract:
An electron emission device is provided including a first substrate and a second substrate facing each other and separated from each other by a predetermined distance. An electron emission unit is disposed on the first substrate, and a light emission unit is disposed on a surface of the second substrate facing the first substrate. A grid electrode is disposed between the first substrate and the second substrate, and has a hole region with a plurality of electron beam-guide holes and a no-hole region surrounding the hole region. The first substrate has a first active area and a first outer portion. The second substrate has a second active area and a second outer portion. The grid electrode has a larger area than the first active area and the second active area, and the no-hole region is disposed corresponding to the first outer portion.