Abstract:
A shadow mask for a cathode ray tube includes an aperture area having a plurality of apertures passing electron beams, a non-aperture area extending a predetermined distance from a circumference of the aperture area and a skirt extending a predetermined distance from an outside circumference of the non-aperture area and bent at a predetermined angle to the non-aperture area, wherein the aperture area has predetermined curvature radii, and wherein if a curvature radius in a horizontal direction of the aperture area is Rhs, and a curvature radius in a vertical direction is Rvs, the following condition is satisfied, 0.6
Abstract:
A shadow mask for a Cathode Ray Tube (CRT) facilitates high resolution with enhanced impact resistance and minimized thickness. The shadow mask has an effective screen portion with a plurality of beam passage holes arranged in a predetermined pattern, and a non-holed portion surrounding the effective screen portion with no beam passage holes., The vertical pitch of the beam passage holes is in the range of 0.4-0.5 mm, and the thickness of the shadow mask is in the range of 0.15-0.2 mm.
Abstract:
A cathode ray tube including a shadow mask. The shadow mask includes an aperture portion including a plurality of beam guide holes, a non-aperture portion surrounding the aperture portion, and a skirt portion that is bent from an edge of the non-aperture portion toward an electron gun. The non-aperture portion includes a pair of longer sides, a pair of shorter sides, and four corner portions, and a first width of the non-aperture portion measured at the longer side and a second width of the non-aperture portion measured at the shorter side are formed to be less than a third width of the non-aperture portion measured at the corner portions. The shadow mask satisfies the following conditions: 2 mm≦w1
Abstract translation:一种包括荫罩的阴极射线管。 荫罩包括包括多个光束引导孔的开口部分,围绕开口部分的非开口部分和从非开口部分的边缘向电子枪弯曲的裙部。 非开口部分包括一对长边,一对短边和四个拐角部分,以及在较长侧测量的非开口部分的第一宽度和在非开口部分测量的第二宽度 短边形成为小于在角部测量的非开口部的第三宽度。 荫罩满足以下条件:2 mm <= w1
Abstract:
A cathode ray tube includes a panel with inner and outer surfaces, a funnel connected to the panel, a neck connected to the rear of the funnel, and a shadow mask mounted within the panel. The inner surface of the panel satisfies the following condition: 0.2≦Px≦0.4, 0.3≦Py≦0.6 where when the inner surface of the panel is expressed by the following biquadratic: z ( x , y ) = ∑ i , j = 0 , 2 , 4 A i , j x i y j , based on the central point of the inner surface of the panel with the three-dimensional orthogonal coordinates system defined by the x, y and z axes, Px and Py are defined by the following formula: Px = A 20 A 20 + A 40 , Py = A 02 A 02 + A 04
Abstract:
A shadow mask for a Cathode Ray Tube (CRT) which achieves a high brightness and white uniformity by minimizing light emission of incorrect colors, includes: an effective screen portion with a plurality of beam passage holes arranged in a predetermined pattern and a non-holed portion surrounding the effective screen portion with no beam passage holes. The beam passage holes have a large-sized hole portion on a side facing a panel of the CRT and a small-sized hole portion that is smaller than the large-sized hole portion on a side facing an electron gun are selected such. A concave portion is formed on each of the beam passage holes arranged in a direction from a center of the effective screen portion to a direction of emission, and the concave portion is varied from the center of the effective screen portion diagonally such that a serif width D satisfies D=a−bx+cx2 (wherein a, b, and c are constants, and x is a spatial distance from the center of the effective screen portion to the center of the beam passage hole) and a, b, and c are selected such that {c/(b+c)} has an absolute value between 0.0092 and 0.0099.
Abstract:
A Cathode Ray Tube (CRT) includes a panel having an inner phosphor screen, a funnel connected to the panel and adapted to have a deflection unit arranged thereon and a neck connected to the funnel and having an electron gun arranged therein. A shatter-proof member is installed on the funnel to prevent the tube from shattering.
Abstract:
A cathode ray tube includes a panel with a substantially flat outer surface and an inner curved surface. The inner curved surface of the panel has a phosphor screen. A funnel is connected to the panel while externally mounting a deflection unit for deflecting electron beams. A neck is connected to the funnel while internally mounting an electron gun for emitting the electron beams. A color selection apparatus is internally fitted to the panel such that the electron beams land on correct phosphors of the phosphor screen. The panel has an effective screen with short and long axis. The panel bears a first thickness Th at the ends of the effective screen in the long axis direction, and a second thickness Tv at the ends of the effective screen in the short axis direction. The second thickness Tv of the panel is established to be larger than the first thickness Th of the panel. The color selection apparatus has a mask with short and long axis while bearing a plurality of beam-guide holes, and a frame combined with the mask such that the mask maintains a tensioned state. The mask is tensioned in the long axis direction while being supported by the frame.
Abstract:
A cathode ray tube includes a panel with inner and outer surfaces, a funnel connected to the panel, a neck connected to the rear of the funnel, and a shadow mask mounted within the panel. The inner surface of the panel satisfies the following condition: 0.2≦Px≦0.4, 0.3≦Py≦0.6 where when the inner surface of the panel is expressed by the following biquadratic: z ( x , y ) = ∑ i , j = 0 , 2 , 4 A i , j x i y j , based on the central point of the inner surface of the panel with the three-dimensional orthogonal coordinates system defined by the x, y and z axes, Px and Py are defined by the following formula: Px = A 20 A 20 + A 40 , Py = A 02 A 02 + A 04
Abstract:
A cathode ray tube includes a panel having a front screen portion on which a phosphor screen is formed and a panel flange integrally formed on an edge of the front screen portion, a funnel connected to the panel flange, a deflection yoke disposed around the funnel, a neck connected to the funnel, an electron gun disposed in the neck, a color selection apparatus for selecting electron beams emitted from the electron gun and allowing the selected electron beams to land on corresponding phosphors, and an inner shield for shielding geomagnetism, the inner shield mounted on the color selection apparatus. The color selection apparatus includes a mask having a plurality of electron beam-passing apertures, the mask being rectangular and having a longitudinal axis and a lateral axis, a frame for supporting the mask in a tensioned state, and a pair of side shield members mounted on lateral sides of the frame to shield the geomagnetism.
Abstract:
A tension mask assembly for a flat cathode ray tube includes a tension mask having a plurality of strips separated from one another by a predetermined gap, real bridges connecting adjacent strips to thus define slots through which electron beams pass, and first and second dummy bridges extending from adjacent strips toward each slot therebetween, the tension mask being installed such that its top surface faces a panel forming a screen and it is separated from the panel by a predetermined gap, a plurality of supporting members disposed at opposite sides of the tension mask to support the tension mask, and a plurality of rigid members secured to opposite ends of the supporting members to apply tension to the tension mask. A first etching boundary formed at an end of the first dummy bridge near to the center of the tension mask is lower with respect to the screen than a second etching boundary formed at an end of the second dummy bridge near to the periphery of the tension mask. The shape of a section of a slot having dummy bridges are formed such that an electron beam is prevented from passing through the slot, thereby solving the problem of visibility. Therefore, cathode ray tubes having a high definition can be manufactured.