Abstract:
A system on chip (SoC) adjusts power of a memory through a handshake. The SoC includes a memory controller and a power manager. The memory controller is configured to control a memory. The power manager is configured to manage a supply power level of the memory. The memory controller is configured to output, to the power manager, a memory access level indicating a frequency of accesses to the memory. The power manager is configured to adjust the supply power level of the memory according to the memory access level.
Abstract:
A system on chip (SoC) adjusts power of a memory through a handshake. The SoC includes a memory controller and a power manager. The memory controller is configured to control a memory. The power manager is configured to manage a supply power level of the memory. The memory controller is configured to output, to the power manager, a memory access level indicating a frequency of accesses to the memory. The power manager is configured to adjust the supply power level of the memory according to the memory access level.
Abstract:
A system on chip (SoC) adjusts power of a memory through a handshake. The SoC includes a memory controller and a power manager. The memory controller is configured to control a memory. The power manager is configured to manage a supply power level of the memory. The memory controller is configured to output, to the power manager, a memory access level indicating a frequency of accesses to the memory. The power manager is configured to adjust the supply power level of the memory according to the memory access level.
Abstract:
A system on chip (SoC) adjusts power of a memory through a handshake. The SoC includes a memory controller and a power manager. The memory controller is configured to control a memory. The power manager is configured to manage a supply power level of the memory. The memory controller is configured to output, to the power manager, a memory access level indicating a frequency of accesses to the memory. The power manager is configured to adjust the supply power level of the memory according to the memory access level.
Abstract:
An apparatus for a transmit end in a wireless communication system is provided. The apparatus includes at least one scrambler configured to scramble a transmission bit stream, wherein the at least one scrambler comprises, a first circulation unit configured to output, during one cycle, at least one bit for scrambling odd-numbered bits of the transmission bit stream and at least one bit for scrambling even-numbered bits of the transmission bit stream, a second circulation unit configured to output, during one cycle, at least one bit for scrambling odd-numbered bits of the transmission bit stream and at least one bit for scrambling even-numbered bits of the transmission bit stream, and operators configured to generate a scrambled bit stream, wherein each of the operators generates a scrambled bit using an input bit, an output bit from the first circulation unit and an output bit from the second circulation unit.