Abstract:
A temperature control system of a mobile device is provided. The system includes a memory for storing a set temperature value and a release temperature value, a temperature sensor for sensing an internal temperature of the mobile device; at least one module that emits heat, and a controller. The controller compares the output of the temperature sensor with the set temperature value in a normal mode in order to determine whether the mobile device is overheated, and controls, if the mobile device is overheated, the at least one module to operate in a heat generation suppressing mode, compares the output of the temperature sensor with the release temperature value in the heat generation suppressing mode in order to determine whether to release the heat generation suppressing mode, and executes the normal mode if the heat generation suppressing mode is released according to the comparison result.
Abstract:
A method for controlling a voltage based on a temperature and a terminal supporting the same are provided. The terminal includes a temperature sensor for detecting a temperature of at least one location of the inside and of the outside of at least one system and a voltage control unit for adjusting the voltage supplied to the at least one system according to the temperature detected by the temperature sensor.
Abstract:
An apparatus and method for selecting a Proximity Interface Coupling Card (PICC) of a portable terminal having a Near Field Communication (NFC) module including multiple PICCs are provided. The method includes activating the NFC module when the portable terminal is at a power-off state, determining whether a key signal for activating one PICC among the multiple of PICCs is inputted in the activated NFC module, and activating the PICC mapped with the inputted key signal when the key signal is inputted.
Abstract:
An electronic device (201) according to one embodiment may comprise: a display (260); a first converter circuit (245) which includes a non-inverting buckbooster (510) and a charge pump (530) and is configured to supply a negative first bias voltage to the display (260); and a control circuit (220). The control circuit (220), according to one embodiment, can be configured to check a target first bias voltage to be supplied to the display (260). The control circuit (220), according to one embodiment, can be configured to output a first voltage corresponding to half the absolute value of the target first bias voltage to the charge pump (530) by using the non-inverting buckbooster (510). The control circuit (220), according to one embodiment, can be configured to generate a second voltage by inverting the sign of the first voltage and converting the magnitude of the first voltage by a factor of two through the charge pump (530). The control circuit (220), according to one embodiment, can be configured to supply the second voltage to the display (260) as the first bias voltage.
Abstract:
A method and an apparatus for diagnosing an electronic apparatus are provided. The device for diagnosing an electronic device includes a master diagnosis block that generates a control signal when a diagnosis mode is started, a multiplexer that sequentially outputs a diagnosis power through a diagnosis power path based on the control signal, a slave diagnosis block that is sequentially supplied the diagnosis power through the diagnosis power path and generates diagnosis data of a power management circuit of the electronic device by using the diagnosis power, a modulator that transmits the diagnosis data by modulating a power signal of the diagnosis power path, and a demodulator that receives the diagnosis data by demodulating the power signal of the diagnosis power path and provides the diagnosis data to the master diagnosis block.
Abstract:
An overcurrent protection device of a power supply is provided. The overcurrent protection device includes an inductor, a first switch, a second switch, a feedback controller, a pulse width modulation (PWM) controller, and an overcurrent protection controller. The inductor may be connected to an input terminal of the power supply to which a current is inputted from a power source. The first switch may be connected between an output terminal of the inductor and a ground. The second switch may be connected between the output terminal of the inductor and an output terminal of the power supply. The feedback controller may compare an output voltage of the power supply with an output voltage target value, and generate a control voltage based on a result of comparing the output voltage and the output voltage target value. The PWM controller may control switch-on and switch-off of the first and second switches, and control a peak current of the first switch based on the control voltage. The overcurrent protection controller may include a timing capacitor charged with a current source proportional to the control voltage, and generate an overcurrent control signal for driving the PWM controller based on the control voltage. The overcurrent protection controller may charge the timing capacitor by the current source during a first switching period in which the second switch is turned on. When an output current exceeds a predetermined level regardless of an input voltage from the power source, an operation of the power supply may be stopped based on the overcurrent control signal.
Abstract:
An apparatus for supplying power in a mobile terminal is provided. The apparatus includes a battery, a power management integration circuit including a buck-boost converter for converting a battery voltage to output a specific voltage, and a plurality of regulators for regulating the specific voltage output from the buck-boost converter to voltages of respective corresponding constituent elements and for outputting the regulated voltages, the buck-boost converter operating in a buck mode when the battery voltage is greater than the specific voltage, and the buck-boost converter operating in a boost mode when the battery voltage is less than the specific voltage, such that the constituent elements include a controller for controlling an operation of the mobile terminal, a touch panel for generating an input and for providing the generated input signal to the controller, and a display unit for displaying an operation of the mobile terminal under control of the controller.
Abstract:
An electronic device including an organic light emitting display device is provided. The electronic device includes the organic light emitting display device and a display power management integrated circuit (PMIC). The organic light emitting display device includes a display panel including a plurality of gate lines, a plurality of data lines, and a plurality of pixels, and a display driver IC (DDI) for driving the display panel. The display PMIC includes a first regulator that outputs a first voltage changed in magnitude from an input voltage input to the display PMIC, and a second regulator that outputs a second voltage phase-inverted and changed in magnitude from the input voltage.
Abstract:
An electronic device includes: a first DC/DC converter including switches, a first capacitor, and a first inductor; and control circuit configured to control on/off states of the switches. In an on state, the switches include: a first switch configured to connect one end of the first capacitor to the input power source; a second switch configured to connect the one end of the first capacitor to one end of the first inductor; a third switch configured to connect another end of the first capacitor to the one end of the first inductor; and a fourth switch configured to connect the other end of the first capacitor to an output terminal of the first DC/DC converter. The first inductor includes the one end connected to the other end of the second switch and the one end of the third switch, and another end connected to a ground.
Abstract:
A temperature control system of a mobile device is provided. The system includes a memory for storing a set temperature value and a release temperature value, a temperature sensor for sensing an internal temperature of the mobile device; at least one module that emits heat, and a controller. The controller compares the output of the temperature sensor with the set temperature value in a normal mode in order to determine whether the mobile device is overheated, and controls, if the mobile device is overheated, the at least one module to operate in a heat generation suppressing mode, compares the output of the temperature sensor with the release temperature value in the heat generation suppressing mode in order to determine whether to release the heat generation suppressing mode, and executes the normal mode if the heat generation suppressing mode is released according to the comparison result.