Abstract:
A pulse generation apparatus includes a delay pulse generator configured to generate a plurality of delay pulses, an amplitude modulator configured to modulate amplitudes of the plurality of delay pulses, and a Gaussian pulse generator configured to generate a Gaussian pulse based on the amplitude-modulated delay pulses.
Abstract:
An apparatus and method for ultra wideband (UWB) communication, using a dual band pass filter (BPF) is disclosed. The UWB communication apparatus may include a first BPF performing a first band pass filtering with respect to a UWB signal, a second BPF that has a center frequency differing from a center frequency of the first BPF, and performs a second band pass filtering with respect to the UWB signal, a first envelope detector that detects a size of a first signal filtered in the first BPF, a second envelope detector that detects a size of a second signal filtered in the second BPF, and a demodulator that demodulates a UWB signal, using the size of the first signal and the size of the second signal.
Abstract:
A pulse generation apparatus includes a delay pulse generator configured to generate a plurality of delay pulses, an amplitude modulator configured to modulate amplitudes of the plurality of delay pulses, and a Gaussian pulse generator configured to generate a Gaussian pulse based on the amplitude-modulated delay pulses.
Abstract:
A receiver, an operating method of the receiver, and a beamforming radar system including the receiver are provided. A beamforming receiver may include a demodulation circuit configured to receive a signal reflected from an object via an antenna, to demodulate the received signal, and to generate a demodulated signal, and a time delay circuit configured to generate a digital signal by processing the demodulated signal based on reference clock signals, wherein the digital signal including static delay information associated with a static motion of the object, and dynamic delay information associated with a dynamic motion of the object.
Abstract:
A transmitter and a receiver for reducing power consumption in a frequency modulation-ultra-wideband (FM-UWB) communication system are provided. The transmitter includes a detector configured to generate a pulse signal when an edge of a digital signal is detected. The transmitter further includes a first modulator configured to modulate the digital signal into a first modulation signal based on a value of the digital signal. The transmitter further includes a second modulator configured to modulate the first modulation signal into a second modulation signal based on a frequency of the first modulation signal when the pulse signal is generated.
Abstract:
A implicit structured light decoding method, a computer equipment and a computer-readable storage medium. The method includes: traversing an image captured by a camera to acquire a grayscale value of each pixel point and an ideal neighborhood grayscale distribution; extracting and outputting an updated output image according to the grayscale value of each pixel point and the ideal neighborhood grayscale distribution and in combination with a preset output image; classifying stripe central points in the updated output image into different stripes; determining a correspondence between stripes in the updated output image and stripes in a structured light image according to the different stripes; and decoding all stripe central points by using triangulation method in combination with the correspondence between the extracted stripes and the projected stripe pattern. This solution can efficiently and robustly decode the implicit stripe-based structured light on a basis of ensuring precision.
Abstract:
The present invention relates to the technical field of the human computer interaction, more particularly to, a system and method for human computer interaction. The system for human computer interaction comprises a projection unit, a first image sensing unit, a second image sensing unit, an interface unit, an image processing unit, a projected interface processing unit, and a controlling unit. The system for human computer interaction provided by the present invention may easily project the human computer interaction interface on all kinds of planes encountered in people's daily life, to realize display of the human computer interaction interface everywhere, and improve users' experience.
Abstract:
A video blind denoising method based on deep learning, a computer device and a computer-readable storage medium. The method includes: taking a video sequence from a video to be denoised, taking the middle frame in the video sequence as a noisy reference frame, performing an optical flow estimation on the image corresponding to the noisy reference frame and each other frame in the video sequence, to obtain optical flow fields; transforming, according to the optical flow fields, the image corresponding to each other frame in the video sequence to the noisy reference frame for registration respectively, to obtain multi-frame noisy registration images; taking the multi-frame noisy registration images as an input of a convolutional neural network, taking the noisy reference frame as the reference image, performing iterative training and denoising by using the noise2noise training principle, to obtain the denoised image. This solution may achieve the blind denoising of a video.
Abstract:
The present invention relates to the technical field of the human computer interaction, more particularly to, a system and method for human computer interaction. The system for human computer interaction comprises a projection unit, a first image sensing unit, a second image sensing unit, an interface unit, an image processing unit, a projected interface processing unit, and a controlling unit. The system for human computer interaction provided by the present invention may easily project the human computer interaction interface on all kinds of planes encountered in people's daily life, to realize display of the human computer interaction interface everywhere, and improve users' experience.