Abstract:
A current stimulator includes a first current generation circuit configured to generate a first current, injectable into a cranial nerve cell, through a current mirroring based on a plurality of transistor pairs; and a second current generation circuit, driven by a clock, configured to generate a second current smaller than the first current by controlling a charge rate based on a voltage difference between terminals of a capacitor. A first output impedance of the first current generation circuit and a second output impedance of the second current generation circuit have a magnitude greater than or equal to a predetermined ratio to a load impedance corresponding to the cranial nerve cell.
Abstract:
A device with wireless communication includes: an input receiver configured to receive an input signal having a carrier frequency; a delay circuit configured to generate a delayed signal by delaying the input signal; and a clock generator configured to generate a clock signal having a clock frequency based on the delayed signal and the input signal.
Abstract:
A clock frequency supply device includes: a frequency tuner configured to receive an input signal with a carrier frequency, and tune an oscillation frequency of an oscillator based on the carrier frequency; an injector configured to inject the input signal directly into the oscillator after the tuning of the oscillation frequency is completed; and an oscillator configured to generate a reference clock signal with a reference clock frequency based on the injected input signal.
Abstract:
An antenna is described including a slot formed in a cavity, a substrate configured to cover a portion of the cavity and the slot, and a first port and a second port configured to supply power to the antenna using a first feeding line and a second feeding line. Each of the feeding line and the second feeding line is connected to the slot in a vertical direction and disposed to be separate from one another. A first input impedance of the antenna from the first port differs from a second input impedance of the antenna from the second port.
Abstract:
A filter and a transceiver in a radio frequency (RF) band, using a bulk acoustic wave resonator (BAWR), are provided. The RF filter includes at least one low temperature coefficient of frequency (TCF) BAWR. The RF filter further includes at least one high quality factor (Q) BAWR including a high Q compared to the at least one low TCF BAWR, the at least one low TCF BAWR including a low TCF compared to the at least one high Q BAWR.
Abstract:
A near field communication (NFC) transceiver includes a receiver, a transmitter, and a clock recovery circuit. The receiver is configured to recover a reception (RX) frame encoded with power supply information and information transmitted from a reader to a tag. The transmitter is configured to recover a transmission (TX) frame by a subcarrier load modulation scheme for information transmitted from the tag to the reader. The clock recovery circuit is configured to recover a carrier signal of the TX frame as a baseband clock signal of the NFC transceiver through a rail-to-rail boosting.
Abstract:
A super-regenerative receiver (SRR) includes a super-regenerative oscillator (SRO), and an active channel filter disposed at a front end of the SRO, and configured to filter out an interferer in a signal received by the SRR.
Abstract:
A reception apparatus having a dual reception structure includes a first receiver having a first quality (Q) factor and configured to receive a signal in a predetermined band in response to the first receiver being selected by a reception controller; a second receiver having a second Q factor greater than the first Q factor and configured to receive the signal in the predetermined band in response to the second receiver being selected by the reception controller; and a reception controller configured to select one of the first receiver and the second receiver based on interference information associated with an adjacent band adjacent to the predetermined band.
Abstract:
An apparatus and a method for wireless power reception are provided. A wireless power receiver includes a receiving unit configured to wirelessly receive a power. The wireless power receiver further includes a power consuming unit configured to consume the power, until a voltage applied to a load reaches a predetermined value, so that an amount of a power transferred from the receiving unit to the load is less than or equal to an initial accommodation power amount of the load.
Abstract:
A power circuit for reducing a leakage power using a negative voltage is provided. The power circuit includes a current source including a transistor including a gate. The power circuit further includes a current source control circuit connected to the gate of the transistor, and configured to apply a positive voltage to the gate of the transistor if the current source is to operate in an active mode, and apply the negative voltage to the gate of the transistor if the current source is to operate in an inactive mode.