Abstract:
A semiconductor device is provided. The semiconductor includes a semiconductor chip, a package substrate, and an electromagnetic interference (EMI) shielding layer. The package substrate, arranged under the semiconductor chip, is electrically connected to the semiconductor chip. The package substrate has a receiving groove. The EMI shielding layer is arranged in the receiving groove to shield EMI propagated from a lower surface of the semiconductor chip through the package substrate.
Abstract:
According to example embodiments, a semiconductor package includes: a lower molding element; a lower semiconductor chip in the lower molding element and having lower chip pads on an upper surface and at an areas close to first and second sides of the lower molding element; conductive pillars surrounding the lower semiconductor chip and passing through the lower molding element; an upper semiconductor chip on the upper surface of the lower molding element and lower semiconductor chip, the upper semiconductor chip having upper chip pads on a top surface and at areas close to third and the fourth sides of the upper semiconductor chip, and a connecting structure on the lower molding element and the upper semiconductor chip and electrically connecting each of the lower chip pads and upper chip pads to a corresponding conductive pillar. The upper semiconductor chip is substantially orthogonal to the lower semiconductor chip.
Abstract:
A semiconductor package includes a package substrate having a lower substrate and an upper substrate disposed on the lower substrate, the package substrate having a first cavity, a first semiconductor chip disposed in the first cavity, and a chip stack disposed to partially cover the first cavity on the upper substrate.
Abstract:
Provided are a double-sided adhesive tape, semiconductor packages, and methods of fabricating the packages. A method of fabricating semiconductor packages includes providing a double-sided adhesive tape on a top surface of a carrier, the double-sided adhesive tape including a first adhesive layer and a second adhesive layer stacked on the first adhesive layer, the first adhesive layer of the double-sided adhesive tape being in contact with the top surface of the carrier, adhering active surfaces of a plurality of semiconductor chips onto the second adhesive layer of the double-sided adhesive tape, separating the first adhesive layer from the second adhesive layer such that the second adhesive layer remains on the active surfaces of the semiconductor chips, patterning the second adhesive layer to form first openings that selectively expose the active surfaces of the semiconductor chips, and forming first conductive components on the second adhesive layer to fill the first openings.