Abstract:
A microorganism expressing a vector encoding a CoA-dependent succinate semialdehyde dehydrogenase to efficiently produce a C4 compound, and methods for the use thereof.
Abstract:
In some embodiments, a method of operating an image sensor supporting a low speed mode and a high speed mode includes: outputting a first set of output signals from a first pixel group to a first output line group by enabling, during a first period of the low speed mode, a first load circuit group connected to the first set of output signals; outputting a second set of output signals from a second pixel group to a second output line group by enabling, during a second period of the low speed mode different from the first period, a second load circuit group connected to the second set of output signals; and disabling the second load circuit group during at least a part of the first period.
Abstract:
A recombinantly modified Corynebacterium glutamicum microorganism with an improved 1,4-butanediol (1,4-BDO) productivity relative to an unmodified Corynebacterium glutamicum microorganism, wherein activity of an enzyme catalyzing a conversion reaction between malate and oxaloacetate is inactivated or reduced relative to an unmodified Corynebacterium glutamicum microorganism, as well as a method of making and using same.
Abstract:
A source driver includes an interpolation amplifier configured to generate an interpolation voltage based on a received plurality of input voltages and output the interpolation voltage to a display panel; and an input selector configured to receive a first voltage and a second voltage having a different level from the first voltage, and configured to selectively provide at least one of the first and second voltages as the plurality of input voltages in response to some of the lower bits of pixel data. The interpolation amplifier includes four conductive differential input pairs configured to receive four input voltages from among the plurality of input voltages, respectively. Each of the first differential input pair and third differential input pair comprises a first type transistor. Each of the second differential input pair and fourth differential input pair comprises a second type transistor.
Abstract:
A method of managing a message transmission flow and a storage device using the method are provided. The method of managing a message transmission flow includes receiving, at a storage device, response transmission type information in at least one of a command phase and a data phase, and transmitting response information to a host in at least one of a normal mode and a fast mode based on the received response transmission type information. The normal mode and the fast mode have different latencies.
Abstract:
A zoom lens includes a first lens group having a positive refractive power; a second lens group having a negative refractive power; a third lens group including a first sub-lens group having a positive refractive power, an iris, and a second sub-lens group having a positive refractive power; and a fourth lens group having a positive refractive power, wherein the first to fourth lens groups are sequentially arranged from an object side to an image side, the distance between each of the first through fourth lens groups changes when zooming, the surface of the lens closest to the image side in the first sub-lens group is concave, the lens closest to the object side in the second sub-lens group is a meniscus lens concave towards the object side, and the lens located closest to the object side in the third lens group is an aspheric lens.
Abstract:
A zoom lens that includes, in order from an object side to an image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power, and when zooming from a wide angle position to a telephoto position, an interval between the first lens group and the second lens group decreases, an interval between the second lens group and the third lens group decreases, and an interval between the third lens group and the fourth lens group increases.
Abstract:
Provided are a zoom lens and an electronic device including the same. The zoom lens includes, in order from an object side to an image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power. When zooming from a wide angle position to a telephoto position, an interval between the first lens group and the second lens group decreases, an interval between the second lens group and the third lens group decreases, and an interval between the third lens group and the fourth lens group increases. The second lens group includes, in a sequence from the object side, a positive lens, a positive lens, a positive lens, and a negative lens.
Abstract:
A zoom lens includes, in an order from an object side to an image surface side: a first lens group having positive refractive power and including a negative lens and a positive lens; a second lens group having negative refractive power and including a negative lens having a meniscus shape concave to the image surface side; a third lens group having positive refractive power and including an aspherical lens having at least one aspherical surface; and a fourth lens group having positive refractive power. During zooming from a wide angle position to a telephoto position, the first through fourth lens groups all move, and the third lens group moves from the image surface side to the object side and then back to the image surface side.
Abstract:
A zoom lens includes a first lens group having a positive refractive power; a second lens group having a negative refractive power; a third lens group including a first sub-lens group having a positive refractive power, an iris, and a second sub-lens group having a positive refractive power; and a fourth lens group having a positive refractive power, wherein the first to fourth lens groups are sequentially arranged from an object side to an image side, the distance between each of the first through fourth lens groups changes when zooming, the surface of the lens closest to the image side in the first sub-lens group is concave, the lens closest to the object side in the second sub-lens group is a meniscus lens concave towards the object side, and the lens located closest to the object side in the third lens group is an aspheric lens.